Abstract:We introduce a new paradigm for active sound modification: Active Speech Enhancement (ASE). While Active Noise Cancellation (ANC) algorithms focus on suppressing external interference, ASE goes further by actively shaping the speech signal -- both attenuating unwanted noise components and amplifying speech-relevant frequencies -- to improve intelligibility and perceptual quality. To enable this, we propose a novel Transformer-Mamba-based architecture, along with a task-specific loss function designed to jointly optimize interference suppression and signal enrichment. Our method outperforms existing baselines across multiple speech processing tasks -- including denoising, dereverberation, and declipping -- demonstrating the effectiveness of active, targeted modulation in challenging acoustic environments.
Abstract:We present a novel deep learning network for Active Speech Cancellation (ASC), advancing beyond Active Noise Cancellation (ANC) methods by effectively canceling both noise and speech signals. The proposed Multi-Band Mamba architecture segments input audio into distinct frequency bands, enabling precise anti-signal generation and improved phase alignment across frequencies. Additionally, we introduce an optimization-driven loss function that provides near-optimal supervisory signals for anti-signal generation. Experimental results demonstrate substantial performance gains, achieving up to 7.2dB improvement in ANC scenarios and 6.2dB in ASC, significantly outperforming existing methods. Audio samples are available at https://mishalydev.github.io/DeepASC-Demo