Abstract:Current approaches to phrase break prediction address crucial prosodic aspects of text-to-speech systems but heavily rely on vast human annotations from audio or text, incurring significant manual effort and cost. Inherent variability in the speech domain, driven by phonetic factors, further complicates acquiring consistent, high-quality data. Recently, large language models (LLMs) have shown success in addressing data challenges in NLP by generating tailored synthetic data while reducing manual annotation needs. Motivated by this, we explore leveraging LLM to generate synthetic phrase break annotations, addressing the challenges of both manual annotation and speech-related tasks by comparing with traditional annotations and assessing effectiveness across multiple languages. Our findings suggest that LLM-based synthetic data generation effectively mitigates data challenges in phrase break prediction and highlights the potential of LLMs as a viable solution for the speech domain.