Abstract:Drones are becoming more and more popular nowadays. They are small in size, low in cost, and reliable in operation. They contain a variety of sensors and can perform a variety of flight tasks, reaching places that are difficult or inaccessible for humans. Earthquakes damage a lot of infrastructure, making it impossible for rescuers to reach some areas. But drones can help. Many amateur and professional photographers like to use drones for aerial photography. Drones play a non-negligible role in agriculture and transportation too. Drones can be used to spray pesticides, and they can also transport supplies. A quadcopter is a four-rotor drone and has been studied in this paper. In this paper, random noise is added to the quadcopter system and its effects on the drone system are studied. An extended Kalman filter has been used to estimate the state based on noisy observations from the sensor. Based on a SDE system, a linear quadratic Gaussian controller has been implemented. The expectation maximization algorithm has been applied for parameter estimation of the quadcopter. The results of offline parameter estimation and online parameter estimation are presented. The results show that the online parameter estimation has a slightly larger range of convergence values than the offline parameter estimation.
Abstract:Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
Abstract:Histopathology analysis relies on Hematoxylin and Eosin (H&E) staining, but fluorescence microscopy offers complementary information. Converting fluorescence images to H&E-like appearance can aid interpretation and integration with standard workflows. We present a Cycle-Consistent Adversarial Network (CycleGAN) approach for unpaired image-to-image translation from multi-channel fluorescence microscopy to pseudo H&E stained histopathology images. The method combines C01 and C02 fluorescence channels into RGB and learns a bidirectional mapping between fluorescence and H&E domains without paired training data. The architecture uses ResNet-based generators with residual blocks and PatchGAN discriminators, trained with adversarial, cycle-consistency, and identity losses. Experiments on fluorescence microscopy datasets show the model generates realistic pseudo H&E images that preserve morphological structures while adopting H&E-like color characteristics. This enables visualization of fluorescence data in a format familiar to pathologists and supports integration with existing H&E-based analysis pipelines.