Abstract:We propose the Compact Clustering Attention (COCA) layer, an effective building block that introduces a hierarchical strategy for object-centric representation learning, while solving the unsupervised object discovery task on single images. COCA is an attention-based clustering module capable of extracting object-centric representations from multi-object scenes, when cascaded into a bottom-up hierarchical network architecture, referred to as COCA-Net. At its core, COCA utilizes a novel clustering algorithm that leverages the physical concept of compactness, to highlight distinct object centroids in a scene, providing a spatial inductive bias. Thanks to this strategy, COCA-Net generates high-quality segmentation masks on both the decoder side and, notably, the encoder side of its pipeline. Additionally, COCA-Net is not bound by a predetermined number of object masks that it generates and handles the segmentation of background elements better than its competitors. We demonstrate COCA-Net's segmentation performance on six widely adopted datasets, achieving superior or competitive results against the state-of-the-art models across nine different evaluation metrics.
Abstract:View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms