Abstract:The versatility of diffusion models in generating customized images from few samples raises significant privacy concerns, particularly regarding unauthorized modifications of private content. This concerning issue has renewed the efforts in developing protection mechanisms based on adversarial attacks, which generate effective perturbations to poison diffusion models. Our work is motivated by the observation that these models exhibit a high degree of abstraction within their semantic latent space (`h-space'), which encodes critical high-level features for generating coherent and meaningful content. In this paper, we propose a novel anti-customization approach, called HAAD (h-space based Adversarial Attack for Diffusion models), that leverages adversarial attacks to craft perturbations based on the h-space that can efficiently degrade the image generation process. Building upon HAAD, we further introduce a more efficient variant, HAAD-KV, that constructs perturbations solely based on the KV parameters of the h-space. This strategy offers a stronger protection, that is computationally less expensive. Despite their simplicity, our methods outperform state-of-the-art adversarial attacks, highlighting their effectiveness.
Abstract:The growing demand for customized visual content has led to the rise of personalized text-to-image (T2I) diffusion models. Despite their remarkable potential, they pose significant privacy risk when misused for malicious purposes. In this paper, we propose a novel and efficient adversarial attack method, Concept Protection by Selective Attention Manipulation (CoPSAM) which targets only the cross-attention layers of a T2I diffusion model. For this purpose, we carefully construct an imperceptible noise to be added to clean samples to get their adversarial counterparts. This is obtained during the fine-tuning process by maximizing the discrepancy between the corresponding cross-attention maps of the user-specific token and the class-specific token, respectively. Experimental validation on a subset of CelebA-HQ face images dataset demonstrates that our approach outperforms existing methods. Besides this, our method presents two important advantages derived from the qualitative evaluation: (i) we obtain better protection results for lower noise levels than our competitors; and (ii) we protect the content from unauthorized use thereby protecting the individual's identity from potential misuse.