Abstract:Reliable state estimation is essential for autonomous systems operating in complex, noisy environments. Classical filtering approaches, such as the Kalman filter, can struggle when facing nonlinear dynamics or non-Gaussian noise, and even more flexible particle filters often encounter sample degeneracy or high computational costs in large-scale domains. Meanwhile, adaptive machine learning techniques, including Q-learning and neuroevolutionary algorithms such as NEAT, rely heavily on accurate state feedback to guide learning; when sensor data are imperfect, these methods suffer from degraded convergence and suboptimal performance. In this paper, we propose an integrated framework that unifies particle filtering with Q-learning and NEAT to explicitly address the challenge of noisy measurements. By refining radar-based observations into reliable state estimates, our particle filter drives more stable policy updates (in Q-learning) or controller evolution (in NEAT), allowing both reinforcement learning and neuroevolution to converge faster, achieve higher returns or fitness, and exhibit greater resilience to sensor uncertainty. Experiments on grid-based navigation and a simulated car environment highlight consistent gains in training stability, final performance, and success rates over baselines lacking advanced filtering. Altogether, these findings underscore that accurate state estimation is not merely a preprocessing step, but a vital component capable of substantially enhancing adaptive machine learning in real-world applications plagued by sensor noise.