Abstract:Experimental studies of beauty hadron decays face significant challenges due to a wide range of backgrounds arising from the numerous possible decay channels with similar final states. For a particular signal decay, the process for ascertaining the most relevant background processes necessitates a detailed analysis of final state particles, potential misidentifications, and kinematic overlaps, which, due to computational limitations, is restricted to the simulation of only the most relevant backgrounds. Moreover, this process typically relies on the physicist's intuition and expertise, as no systematic method exists. This paper has two primary goals. First, from a particle physics perspective, we present a novel approach that utilises Reinforcement Learning (RL) to overcome the aforementioned challenges by systematically determining the critical backgrounds affecting beauty hadron decay measurements. While beauty hadron physics serves as the case study in this work, the proposed strategy is broadly adaptable to other types of particle physics measurements. Second, from a Machine Learning perspective, we introduce a novel algorithm which exploits the synergy between RL and Genetic Algorithms (GAs) for environments with highly sparse rewards and a large trajectory space. This strategy leverages GAs to efficiently explore the trajectory space and identify successful trajectories, which are used to guide the RL agent's training. Our method also incorporates a transformer architecture for the RL agent to handle token sequences representing decays.
Abstract:The growing luminosity frontier at the Large Hadron Collider is challenging the reconstruction and analysis of particle collision events. Increased particle multiplicities are straining latency and storage requirements at the data acquisition stage, while new complications are emerging, including higher background levels and more frequent particle vertex misassociations. This in turn necessitates the development of more holistic and scalable reconstruction methods that take advantage of recent advances in machine learning. We propose a novel Heterogeneous Graph Neural Network (HGNN) architecture featuring unique representations for diverse particle collision relationships and integrated graph pruning layers for scalability. Trained with a multi-task paradigm in an environment mimicking the LHCb experiment, this HGNN significantly improves beauty hadron reconstruction performance. Notably, it concurrently performs particle vertex association and graph pruning within a single framework. We quantify reconstruction and pruning performance, demonstrate enhanced inference time scaling with event complexity, and mitigate potential performance loss using a weighted message passing scheme.