Abstract:Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textsubscript{\textnormal{ER}} dataset for future training tasks.
Abstract:Cloud compute systems allow administrators to write access control policies that govern access to private data. While policies are written in convenient languages, such as AWS Identity and Access Management Policy Language, manually written policies often become complex and error prone. In this paper, we investigate whether and how well Large Language Models (LLMs) can be used to synthesize access control policies. Our investigation focuses on the task of taking an access control request specification and zero-shot prompting LLMs to synthesize a well-formed access control policy which correctly adheres to the request specification. We consider two scenarios, one which the request specification is given as a concrete list of requests to be allowed or denied, and another in which a natural language description is used to specify sets of requests to be allowed or denied. We then argue that for zero-shot prompting, more precise and structured prompts using a syntax based approach are necessary and experimentally show preliminary results validating our approach.