Abstract:Zero-Shot Anomaly Detection (ZSAD) leverages Vision-Language Models (VLMs) to enable supervision-free industrial inspection. However, existing ZSAD paradigms are constrained by single visual backbones, which struggle to balance global semantic generalization with fine-grained structural discriminability. To bridge this gap, we propose Synergistic Semantic-Visual Prompting (SSVP), that efficiently fuses diverse visual encodings to elevate model's fine-grained perception. Specifically, SSVP introduces the Hierarchical Semantic-Visual Synergy (HSVS) mechanism, which deeply integrates DINOv3's multi-scale structural priors into the CLIP semantic space. Subsequently, the Vision-Conditioned Prompt Generator (VCPG) employs cross-modal attention to guide dynamic prompt generation, enabling linguistic queries to precisely anchor to specific anomaly patterns. Furthermore, to address the discrepancy between global scoring and local evidence, the Visual-Text Anomaly Mapper (VTAM) establishes a dual-gated calibration paradigm. Extensive evaluations on seven industrial benchmarks validate the robustness of our method; SSVP achieves state-of-the-art performance with 93.0\% Image-AUROC and 92.2\% Pixel-AUROC on MVTec-AD, significantly outperforming existing zero-shot approaches.
Abstract:Organoids, sophisticated in vitro models of human tissues, are crucial for medical research due to their ability to simulate organ functions and assess drug responses accurately. Accurate organoid instance segmentation is critical for quantifying their dynamic behaviors, yet remains profoundly limited by high-quality annotated datasets and pervasive overlap in microscopy imaging. While semi-supervised learning (SSL) offers a solution to alleviate reliance on scarce labeled data, conventional SSL frameworks suffer from biases induced by noisy pseudo-labels, particularly in overlapping regions. Synthesis-assisted SSL (SA-SSL) has been proposed for mitigating training biases in semi-supervised semantic segmentation. We present the first adaptation of SA-SSL to organoid instance segmentation and reveal that SA-SSL struggles to disentangle intertwined organoids, often misrepresenting overlapping instances as a single entity. To overcome this, we propose Pseudo-Label Unmixing (PLU), which identifies erroneous pseudo-labels for overlapping instances and then regenerates organoid labels through instance decomposition. For image synthesis, we apply a contour-based approach to synthesize organoid instances efficiently, particularly for overlapping cases. Instance-level augmentations (IA) on pseudo-labels before image synthesis further enhances the effect of synthetic data (SD). Rigorous experiments on two organoid datasets demonstrate our method's effectiveness, achieving performance comparable to fully supervised models using only 10% labeled data, and state-of-the-art results. Ablation studies validate the contributions of PLU, contour-based synthesis, and augmentation-aware training. By addressing overlap at both pseudo-label and synthesis levels, our work advances scalable, label-efficient organoid analysis, unlocking new potential for high-throughput applications in precision medicine.
Abstract:We observe a novel 'multiple-descent' phenomenon during the training process of LSTM, in which the test loss goes through long cycles of up and down trend multiple times after the model is overtrained. By carrying out asymptotic stability analysis of the models, we found that the cycles in test loss are closely associated with the phase transition process between order and chaos, and the local optimal epochs are consistently at the critical transition point between the two phases. More importantly, the global optimal epoch occurs at the first transition from order to chaos, where the 'width' of the 'edge of chaos' is the widest, allowing the best exploration of better weight configurations for learning.