Abstract:Traffic prediction is a critical task in spatial-temporal forecasting with broad applications in travel planning and urban management. Adaptive graph convolution networks have emerged as mainstream solutions due to their ability to learn node embeddings in a data-driven manner and capture complex latent dependencies. However, existing adaptive graph learning methods for traffic forecasting often either ignore the regularization of node embeddings, which account for a significant proportion of model parameters, or face scalability issues from expensive graph convolution operations. To address these challenges, we propose a Regularized Adaptive Graph Learning (RAGL) model. First, we introduce a regularized adaptive graph learning framework that synergizes Stochastic Shared Embedding (SSE) and adaptive graph convolution via a residual difference mechanism, achieving both embedding regularization and noise suppression. Second, to ensure scalability on large road networks, we develop the Efficient Cosine Operator (ECO), which performs graph convolution based on the cosine similarity of regularized embeddings with linear time complexity. Extensive experiments on four large-scale real-world traffic datasets show that RAGL consistently outperforms state-of-the-art methods in terms of prediction accuracy and exhibits competitive computational efficiency.
Abstract:Traffic flow forecasting is a critical spatio-temporal data mining task with wide-ranging applications in intelligent route planning and dynamic traffic management. Recent advancements in deep learning, particularly through Graph Neural Networks (GNNs), have significantly enhanced the accuracy of these forecasts by capturing complex spatio-temporal dynamics. However, the scalability of GNNs remains a challenge due to their exponential growth in model complexity with increasing nodes in the graph. Existing methods to address this issue, including sparsification, decomposition, and kernel-based approaches, either do not fully resolve the complexity issue or risk compromising predictive accuracy. This paper introduces GraphSparseNet (GSNet), a novel framework designed to improve both the scalability and accuracy of GNN-based traffic forecasting models. GraphSparseNet is comprised of two core modules: the Feature Extractor and the Relational Compressor. These modules operate with linear time and space complexity, thereby reducing the overall computational complexity of the model to a linear scale. Our extensive experiments on multiple real-world datasets demonstrate that GraphSparseNet not only significantly reduces training time by 3.51x compared to state-of-the-art linear models but also maintains high predictive performance.