Abstract:Coverage Path Planning (CPP) is vital in precision agriculture to improve efficiency and resource utilization. In irregular and dispersed plantations, traditional grid-based CPP often causes redundant coverage over non-vegetated areas, leading to waste and pollution. To overcome these limitations, we propose CPP-DIP, a multi-objective CPP framework designed for Micro Air Vehicles (MAVs). The framework transforms the CPP task into a Traveling Salesman Problem (TSP) and optimizes flight paths by minimizing travel distance, turning angles, and intersection counts. Unlike conventional approaches, our method does not rely on GPS-based environmental modeling. Instead, it uses aerial imagery and a Histogram of Oriented Gradients (HOG)-based approach to detect trees and extract image coordinates. A density-aware waypoint strategy is applied: Kernel Density Estimation (KDE) is used to reduce redundant waypoints in dense regions, while a greedy algorithm ensures complete coverage in sparse areas. To verify the generality of the framework, we solve the resulting TSP using three different methods: Greedy Heuristic Insertion (GHI), Ant Colony Optimization (ACO), and Monte Carlo Reinforcement Learning (MCRL). Then an object-based optimization is applied to further refine the resulting path. Additionally, CPP-DIP integrates ForaNav, our insect-inspired navigation method, for accurate tree localization and tracking. The experimental results show that MCRL offers a balanced solution, reducing the travel distance by 16.9 % compared to ACO while maintaining a similar performance to GHI. It also improves path smoothness by reducing turning angles by 28.3 % and 59.9 % relative to ACO and GHI, respectively, and effectively eliminates intersections. These results confirm the robustness and effectiveness of CPP-DIP in different TSP solvers.
Abstract:Autonomous Micro Air Vehicles (MAVs) are becoming essential in precision agriculture to enhance efficiency and reduce labor costs through targeted, real-time operations. However, existing unmanned systems often rely on GPS-based navigation, which is prone to inaccuracies in rural areas and limits flight paths to predefined routes, resulting in operational inefficiencies. To address these challenges, this paper presents ForaNav, an insect-inspired navigation strategy for autonomous navigation in plantations. The proposed method employs an enhanced Histogram of Oriented Gradient (HOG)-based tree detection approach, integrating hue-saturation histograms and global HOG feature variance with hierarchical HOG extraction to distinguish oil palm trees from visually similar objects. Inspired by insect foraging behavior, the MAV dynamically adjusts its path based on detected trees and employs a recovery mechanism to stay on course if a target is temporarily lost. We demonstrate that our detection method generalizes well to different tree types while maintaining lower CPU usage, lower temperature, and higher FPS than lightweight deep learning models, making it well-suited for real-time applications. Flight test results across diverse real-world scenarios show that the MAV successfully detects and approaches all trees without prior tree location, validating its effectiveness for agricultural automation.
Abstract:Unmanned Aerial Vehicles (UAVs) are considered cutting-edge technology with highly cost-effective and flexible usage scenarios. Although many papers have reviewed the application of UAVs in agriculture, the review of the application for tree detection is still insufficient. This paper focuses on tree detection methods applied to UAV data collected by UAVs. There are two kinds of data, the point cloud and the images, which are acquired by the Light Detection and Ranging (LiDAR) sensor and camera, respectively. Among the detection methods using point-cloud data, this paper mainly classifies these methods according to LiDAR and Digital Aerial Photography (DAP). For the detection methods using images directly, this paper reviews these methods by whether or not to use the Deep Learning (DL) method. Our review concludes and analyses the comparison and combination between the application of LiDAR-based and DAP-based point cloud data. The performance, relative merits, and application fields of the methods are also introduced. Meanwhile, this review counts the number of tree detection studies using different methods in recent years. From our statics, the detection task using DL methods on the image has become a mainstream trend as the number of DL-based detection researches increases to 45% of the total number of tree detection studies up to 2022. As a result, this review could help and guide researchers who want to carry out tree detection on specific forests and for farmers to use UAVs in managing agriculture production.