Abstract:Online learning enhances educational accessibility, offering students the flexibility to learn anytime, anywhere. However, a key limitation is the lack of immediate, personalized feedback, particularly in helping students correct errors in math problem-solving. Several studies have investigated the applications of large language models (LLMs) in educational contexts. In this paper, we explore the capabilities of LLMs to assess students' math problem-solving processes and provide adaptive feedback. The MathEDU dataset is introduced, comprising authentic student solutions annotated with teacher feedback. We evaluate the model's ability to support personalized learning in two scenarios: one where the model has access to students' prior answer histories, and another simulating a cold-start context. Experimental results show that the fine-tuned model performs well in identifying correctness. However, the model still faces challenges in generating detailed feedback for pedagogical purposes.
Abstract:Due to the remarkable language understanding and generation abilities of large language models (LLMs), their use in educational applications has been explored. However, little work has been done on investigating the pedagogical ability of LLMs in helping students to learn mathematics. In this position paper, we discuss the challenges associated with employing LLMs to enhance students' mathematical problem-solving skills by providing adaptive feedback. Apart from generating the wrong reasoning processes, LLMs can misinterpret the meaning of the question, and also exhibit difficulty in understanding the given questions' rationales when attempting to correct students' answers. Three research questions are formulated.