Abstract:Image-based patient-specific simulation of left ventricular (LV) mechanics is valuable for understanding cardiac function and supporting clinical intervention planning, but conventional finite-element analysis (FEA) is computationally intensive. Current graph-based surrogates do not have full-cycle prediction capabilities, and physics-informed neural networks often struggle to converge on complex cardiac geometries. We present CardioGraphFENet (CGFENet), a unified graph-based surrogate for rapid full-cycle estimation of LV myocardial biomechanics, supervised by a large FEA simulation dataset. The proposed model integrates (i) a global--local graph encoder to capture mesh features with weak-form-inspired global coupling, (ii) a gated recurrent unit-based temporal encoder conditioned on the target volume-time signal to model cycle-coherent dynamics, and (iii) a cycle-consistent bidirectional formulation for both loading and inverse unloading within a single framework. These strategies enable high fidelity with respect to traditional FEA ground truths and produce physiologically plausible pressure-volume loops that match FEA results when coupled with a lumped-parameter model. In particular, the cycle-consistency strategy enables a significant reduction in FEA supervision with only minimal loss in accuracy.
Abstract:Fluid dynamics computations for tube-like geometries are important for biomedical evaluation of vascular and airway fluid dynamics. Physics-Informed Neural Networks (PINNs) have recently emerged as a good alternative to traditional computational fluid dynamics (CFD) methods. The vanilla PINN, however, requires much longer training time than the traditional CFD methods for each specific flow scenario and thus does not justify its mainstream use. Here, we explore the use of the multi-case PINN approach for calculating biomedical tube flows, where varied geometry cases are parameterized and pre-trained on the PINN, such that results for unseen geometries can be obtained in real time. Our objective is to identify network architecture, tube-specific, and regularization strategies that can optimize this, via experiments on a series of idealized 2D stenotic tube flows.