Institute for Infocomm Research, Agency for Science, Technology and Research
Abstract:Electricity price forecasting (EPF) is essential for energy markets stakeholders (e.g. grid operators, energy traders, policymakers) but remains challenging due to the inherent volatility and nonlinearity of price signals. Traditional statistical and deep learning (DL) models often struggle to capture complex temporal dependencies and integrate heterogeneous data effectively. While time series foundation models (TSFMs) have shown strong performance in general time series forecasting tasks, such as traffic forecasting and weather forecasting. However, their effectiveness in day-ahead EPF, particularly in volatile markets, remains underexplored. This paper presents a spike regularization strategy and evaluates a wide range of TSFMs, including Tiny Time Mixers (TTMs), MOIRAI, MOMENT, and TimesFM, against traditional statistical and DL models such as Autoregressive Integrated Moving Average (ARIMA), Long-short Term Memory (LSTM), and Convolutional Neural Network - LSTM (CNN-LSTM) using half-hourly wholesale market data with volatile trends in Singapore. Exogenous factors (e.g. weather and calendar variables) are also incorporated into models where applicable. Results demonstrate that TSFMs consistently outperform traditional approaches, achieving up to 37.4% improvement in MAPE across various evaluation settings. The findings offer practical guidance for improving forecast accuracy and decision-making in volatile electricity markets.
Abstract:Time-series foundation models have emerged as a new paradigm for forecasting, yet their ability to effectively leverage exogenous features -- critical for electricity demand forecasting -- remains unclear. This paper empirically evaluates foundation models capable of modeling cross-channel correlations against a baseline LSTM with reversible instance normalization across Singaporean and Australian electricity markets at hourly and daily granularities. We systematically assess MOIRAI, MOMENT, TinyTimeMixers, ChronosX, and Chronos-2 under three feature configurations: all features, selected features, and target-only. Our findings reveal highly variable effectiveness: while Chronos-2 achieves the best performance among foundation models (in zero-shot settings), the simple baseline frequently outperforms all foundation models in Singapore's stable climate, particularly for short-term horizons. Model architecture proves critical, with synergistic architectural implementations (TTM's channel-mixing, Chronos-2's grouped attention) consistently leveraging exogenous features, while other approaches show inconsistent benefits. Geographic context emerges as equally important, with foundation models demonstrating advantages primarily in variable climates. These results challenge assumptions about universal foundation model superiority and highlight the need for domain-specific models, specifically in the energy domain.