Abstract:Memory stability and learning flexibility in continual learning (CL) is a core challenge for cross-scene Hyperspectral Anomaly Detection (HAD) task. Biological neural networks can actively forget history knowledge that conflicts with the learning of new experiences by regulating learning-triggered synaptic expansion and synaptic convergence. Inspired by this phenomenon, we propose a novel Biologically-Inspired Continual Learning Generative Adversarial Network (CL-BioGAN) for augmenting continuous distribution fitting ability for cross-domain HAD task, where Continual Learning Bio-inspired Loss (CL-Bio Loss) and self-attention Generative Adversarial Network (BioGAN) are incorporated to realize forgetting history knowledge as well as involving replay strategy in the proposed BioGAN. Specifically, a novel Bio-Inspired Loss composed with an Active Forgetting Loss (AF Loss) and a CL loss is designed to realize parameters releasing and enhancing between new task and history tasks from a Bayesian perspective. Meanwhile, BioGAN loss with L2-Norm enhances self-attention (SA) to further balance the stability and flexibility for better fitting background distribution for open scenario HAD (OHAD) tasks. Experiment results underscore that the proposed CL-BioGAN can achieve more robust and satisfying accuracy for cross-domain HAD with fewer parameters and computation cost. This dual contribution not only elevates CL performance but also offers new insights into neural adaptation mechanisms in OHAD task.
Abstract:Emotion identification from gait aims to automatically determine persons affective state, it has attracted a great deal of interests and offered immense potential value in action tendency, health care, psychological detection and human-computer(robot) interaction.In this paper, we propose a new method of identifying emotion from natural walking, and analyze the relevance between the traits of walking and affective states. After obtaining the pure acceleration data of wrist and ankle, we set a moving average filter window with different sizes w, then extract 114 features including time-domain, frequency-domain, power and distribution features from each data slice, and run principal component analysis (PCA) to reduce dimension. In experiments, we train SVM, Decision Tree, multilayerperception, Random Tree and Random Forest classification models, and compare the classification accuracy on data of wrist and ankle with respect to different w. The performance of emotion identification on acceleration data of ankle is better than wrist.Comparing different classification models' results, SVM has best accuracy of identifying anger and happy could achieve 90:31% and 89:76% respectively, and identification ratio of anger-happy is 87:10%.The anger-neutral-happy classification reaches 85%-78%-78%.The results show that it is capable of identifying personal emotional states through the gait of walking.