Abstract:Robotic surgery represents a major breakthrough in medical interventions, which has revolutionized surgical procedures. However, the high cost and limited accessibility of robotic surgery systems pose significant challenges for training purposes. This study addresses these issues by developing a cost-effective robotic laparoscopy training system that closely replicates advanced robotic surgery setups to ensure broad access for both on-site and remote users. Key innovations include the design of a low-cost robotic end-effector that effectively mimics high-end laparoscopic instruments. Additionally, a digital twin platform was established, facilitating detailed simulation, testing, and real-time monitoring, which enhances both system development and deployment. Furthermore, teleoperation control was optimized, leading to improved trajectory tracking while maintaining remote center of motion (RCM) constraint, with a RMSE of 5 {\mu}m and reduced system latency to 0.01 seconds. As a result, the system provides smooth, continuous motion and incorporates essential safety features, making it a highly effective tool for laparoscopic training.