Abstract:The environmental impact of Artificial Intelligence (AI) is emerging as a significant global concern, particularly regarding model training. In this paper, we introduce GREEN (Guided Recommendations of Energy-Efficient Networks), a novel, inference-time approach for recommending Pareto-optimal AI model configurations that optimize validation performance and energy consumption across diverse AI domains and tasks. Our approach directly addresses the limitations of current eco-efficient neural architecture search methods, which are often restricted to specific architectures or tasks. Central to this work is EcoTaskSet, a dataset comprising training dynamics from over 1767 experiments across computer vision, natural language processing, and recommendation systems using both widely used and cutting-edge architectures. Leveraging this dataset and a prediction model, our approach demonstrates effectiveness in selecting the best model configuration based on user preferences. Experimental results show that our method successfully identifies energy-efficient configurations while ensuring competitive performance.
Abstract:Conventional decision-support systems, primarily based on supervised learning, focus on outcome prediction models to recommend actions. However, they often fail to account for the complexities of multi-actor environments, where diverse and potentially conflicting stakeholder preferences must be balanced. In this paper, we propose a novel participatory framework that redefines decision-making as a multi-stakeholder optimization problem, capturing each actor's preferences through context-dependent reward functions. Our framework leverages $k$-fold cross-validation to fine-tune user-provided outcome prediction models and evaluate decision strategies, including compromise functions mediating stakeholder trade-offs. We introduce a synthetic scoring mechanism that exploits user-defined preferences across multiple metrics to rank decision-making strategies and identify the optimal decision-maker. The selected decision-maker can then be used to generate actionable recommendations for new data. We validate our framework using two real-world use cases, demonstrating its ability to deliver recommendations that effectively balance multiple metrics, achieving results that are often beyond the scope of purely prediction-based methods. Ablation studies demonstrate that our framework, with its modular, model-agnostic, and inherently transparent design, integrates seamlessly with various predictive models, reward structures, evaluation metrics, and sample sizes, making it particularly suited for complex, high-stakes decision-making contexts.