Abstract:Machine learning (ML) models are increasingly deployed in cybersecurity applications such as phishing detection and network intrusion prevention. However, these models remain vulnerable to adversarial perturbations small, deliberate input modifications that can degrade detection accuracy and compromise interpretability. This paper presents an empirical study of adversarial robustness and explainability drift across two cybersecurity domains phishing URL classification and network intrusion detection. We evaluate the impact of L (infinity) bounded Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) perturbations on model accuracy and introduce a quantitative metric, the Robustness Index (RI), defined as the area under the accuracy perturbation curve. Gradient based feature sensitivity and SHAP based attribution drift analyses reveal which input features are most susceptible to adversarial manipulation. Experiments on the Phishing Websites and UNSW NB15 datasets show consistent robustness trends, with adversarial training improving RI by up to 9 percent while maintaining clean-data accuracy. These findings highlight the coupling between robustness and interpretability degradation and underscore the importance of quantitative evaluation in the design of trustworthy, AI-driven cybersecurity systems.