Abstract:We evaluate the credibility of leading AI models in assessing investment risk appetite. Our analysis spans proprietary (GPT-4, Claude 3.7, Gemini 1.5) and open-weight models (LLaMA 3.1/3.3, DeepSeek-V3, Mistral-small), using 1,720 user profiles constructed with 16 risk-relevant features across 10 countries and both genders. We observe significant variance across models in score distributions and demographic sensitivity. For example, GPT-4o assigns higher risk scores to Nigerian and Indonesian profiles, while LLaMA and DeepSeek show opposite gender tendencies in risk classification. While some models (e.g., GPT-4o, LLaMA 3.1) align closely with expected scores in low- and mid-risk ranges, none maintain consistent performance across regions and demographics. Our findings highlight the need for rigorous, standardized evaluations of AI systems in regulated financial contexts to prevent bias, opacity, and inconsistency in real-world deployment.