Abstract:We propose a novel deterministic purification method to improve adversarial robustness by mapping a potentially adversarial sample toward a nearby sample that lies close to a mode of the data distribution, where classifiers are more reliable. We design the method to be deterministic to ensure reliable test accuracy and to prevent the degradation of effective robustness observed in stochastic purification approaches when the adversary has full knowledge of the system and its randomness. We employ a score model trained by minimizing the expected reconstruction error of noise-corrupted data, thereby learning the structural characteristics of the input data distribution. Given a potentially adversarial input, the method searches within its local neighborhood for a purified sample that minimizes the expected reconstruction error under noise corruption and then feeds this purified sample to the classifier. During purification, sharpness-aware minimization is used to guide the purified samples toward flat regions of the expected reconstruction error landscape, thereby enhancing robustness. We further show that, as the noise level decreases, minimizing the expected reconstruction error biases the purified sample toward local maximizers of the Gaussian-smoothed density; under additional local assumptions on the score model, we prove recovery of a local maximizer in the small-noise limit. Experimental results demonstrate significant gains in adversarial robustness over state-of-the-art methods under strong deterministic white-box attacks.
Abstract:We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational model is based on partial differential equations and, consequently, is computationally expensive to evaluate. A-optimality is a widely used and easy-to-interpret criterion for the Bayesian design of experiments. The criterion seeks the optimal experiment design by minimizing the expected conditional variance, also known as the expected posterior variance. This work presents a novel likelihood-free method for seeking the A-optimal design of experiments without sampling or integrating the Bayesian posterior distribution. In our approach, the expected conditional variance is obtained via the variance of the conditional expectation using the law of total variance, while we take advantage of the orthogonal projection property to approximate the conditional expectation. Through an asymptotic error estimation, we show that the intractability of the posterior does not affect the performance of our approach. We use an artificial neural network (ANN) to approximate the nonlinear conditional expectation to implement our method. For dealing with continuous experimental design parameters, we integrate the training process of the ANN into minimizing the expected conditional variance. Specifically, we propose a non-local approximation of the conditional expectation and apply transfer learning to reduce the number of evaluations of the observation model. Through numerical experiments, we demonstrate that our method significantly reduces the number of observational model evaluations compared with common importance sampling-based approaches. This reduction is crucial, considering the computationally expensive nature of these models.