Abstract:As multi-agent systems evolve to encompass increasingly diverse and specialized agents, the challenge of enabling effective collaboration between heterogeneous agents has become paramount, with traditional agent communication protocols often assuming homogeneous environments or predefined interaction patterns that limit their applicability in dynamic, open-world scenarios. This paper presents the Agent Capability Negotiation and Binding Protocol (ACNBP), a novel framework designed to facilitate secure, efficient, and verifiable interactions between agents in heterogeneous multi-agent systems through integration with an Agent Name Service (ANS) infrastructure that provides comprehensive discovery, negotiation, and binding mechanisms. The protocol introduces a structured 10-step process encompassing capability discovery, candidate pre-screening and selection, secure negotiation phases, and binding commitment with built-in security measures including digital signatures, capability attestation, and comprehensive threat mitigation strategies, while a key innovation of ACNBP is its protocolExtension mechanism that enables backward-compatible protocol evolution and supports diverse agent architectures while maintaining security and interoperability. We demonstrate ACNBP's effectiveness through a comprehensive security analysis using the MAESTRO threat modeling framework, practical implementation considerations, and a detailed example showcasing the protocol's application in a document translation scenario, with the protocol addressing critical challenges in agent autonomy, capability verification, secure communication, and scalable agent ecosystem management.
Abstract:Traditional Identity and Access Management (IAM) systems, primarily designed for human users or static machine identities via protocols such as OAuth, OpenID Connect (OIDC), and SAML, prove fundamentally inadequate for the dynamic, interdependent, and often ephemeral nature of AI agents operating at scale within Multi Agent Systems (MAS), a computational system composed of multiple interacting intelligent agents that work collectively. This paper posits the imperative for a novel Agentic AI IAM framework: We deconstruct the limitations of existing protocols when applied to MAS, illustrating with concrete examples why their coarse-grained controls, single-entity focus, and lack of context-awareness falter. We then propose a comprehensive framework built upon rich, verifiable Agent Identities (IDs), leveraging Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), that encapsulate an agents capabilities, provenance, behavioral scope, and security posture. Our framework includes an Agent Naming Service (ANS) for secure and capability-aware discovery, dynamic fine-grained access control mechanisms, and critically, a unified global session management and policy enforcement layer for real-time control and consistent revocation across heterogeneous agent communication protocols. We also explore how Zero-Knowledge Proofs (ZKPs) enable privacy-preserving attribute disclosure and verifiable policy compliance. We outline the architecture, operational lifecycle, innovative contributions, and security considerations of this new IAM paradigm, aiming to establish the foundational trust, accountability, and security necessary for the burgeoning field of agentic AI and the complex ecosystems they will inhabit.
Abstract:The proliferation of AI agents requires robust mechanisms for secure discovery. This paper introduces the Agent Name Service (ANS), a novel architecture based on DNS addressing the lack of a public agent discovery framework. ANS provides a protocol-agnostic registry infrastructure that leverages Public Key Infrastructure (PKI) certificates for verifiable agent identity and trust. The architecture features several key innovations: a formalized agent registration and renewal mechanism for lifecycle management; DNS-inspired naming conventions with capability-aware resolution; a modular Protocol Adapter Layer supporting diverse communication standards (A2A, MCP, ACP etc.); and precisely defined algorithms for secure resolution. We implement structured communication using JSON Schema and conduct a comprehensive threat analysis of our proposal. The result is a foundational directory service addressing the core challenges of secured discovery and interaction in multi-agent systems, paving the way for future interoperable, trustworthy, and scalable agent ecosystems.
Abstract:The rise of generative AI (GenAI) multi-agent systems (MAS) necessitates standardized protocols enabling agents to discover and interact with external tools. However, these protocols introduce new security challenges, particularly; tool squatting; the deceptive registration or representation of tools. This paper analyzes tool squatting threats within the context of emerging interoperability standards, such as Model Context Protocol (MCP) or seamless communication between agents protocols. It introduces a comprehensive Tool Registry system designed to mitigate these risks. We propose a security-focused architecture featuring admin-controlled registration, centralized tool discovery, fine grained access policies enforced via dedicated Agent and Tool Registry services, a dynamic trust scoring mechanism based on tool versioning and known vulnerabilities, and just in time credential provisioning. Based on its design principles, the proposed registry framework aims to effectively prevent common tool squatting vectors while preserving the flexibility and power of multi-agent systems. This work addresses a critical security gap in the rapidly evolving GenAI ecosystem and provides a foundation for secure tool integration in production environments.
Abstract:As generative AI (GenAI) agents become more common in enterprise settings, they introduce security challenges that differ significantly from those posed by traditional systems. These agents are not just LLMs; they reason, remember, and act, often with minimal human oversight. This paper introduces a comprehensive threat model tailored specifically for GenAI agents, focusing on how their autonomy, persistent memory access, complex reasoning, and tool integration create novel risks. This research work identifies 9 primary threats and organizes them across five key domains: cognitive architecture vulnerabilities, temporal persistence threats, operational execution vulnerabilities, trust boundary violations, and governance circumvention. These threats are not just theoretical they bring practical challenges such as delayed exploitability, cross-system propagation, cross system lateral movement, and subtle goal misalignments that are hard to detect with existing frameworks and standard approaches. To help address this, the research work present two complementary frameworks: ATFAA - Advanced Threat Framework for Autonomous AI Agents, which organizes agent-specific risks, and SHIELD, a framework proposing practical mitigation strategies designed to reduce enterprise exposure. While this work builds on existing work in LLM and AI security, the focus is squarely on what makes agents different and why those differences matter. Ultimately, this research argues that GenAI agents require a new lens for security. If we fail to adapt our threat models and defenses to account for their unique architecture and behavior, we risk turning a powerful new tool into a serious enterprise liability.
Abstract:As Agentic AI systems evolve from basic workflows to complex multi agent collaboration, robust protocols such as Google's Agent2Agent (A2A) become essential enablers. To foster secure adoption and ensure the reliability of these complex interactions, understanding the secure implementation of A2A is essential. This paper addresses this goal by providing a comprehensive security analysis centered on the A2A protocol. We examine its fundamental elements and operational dynamics, situating it within the framework of agent communication development. Utilizing the MAESTRO framework, specifically designed for AI risks, we apply proactive threat modeling to assess potential security issues in A2A deployments, focusing on aspects such as Agent Card management, task execution integrity, and authentication methodologies. Based on these insights, we recommend practical secure development methodologies and architectural best practices designed to build resilient and effective A2A systems. Our analysis also explores how the synergy between A2A and the Model Context Protocol (MCP) can further enhance secure interoperability. This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol for building robust and secure next generation agentic applications.
Abstract:The Model Context Protocol (MCP), introduced by Anthropic, provides a standardized framework for artificial intelligence (AI) systems to interact with external data sources and tools in real-time. While MCP offers significant advantages for AI integration and capability extension, it introduces novel security challenges that demand rigorous analysis and mitigation. This paper builds upon foundational research into MCP architecture and preliminary security assessments to deliver enterprise-grade mitigation frameworks and detailed technical implementation strategies. Through systematic threat modeling and analysis of MCP implementations and analysis of potential attack vectors, including sophisticated threats like tool poisoning, we present actionable security patterns tailored for MCP implementers and adopters. The primary contribution of this research lies in translating theoretical security concerns into a practical, implementable framework with actionable controls, thereby providing essential guidance for the secure enterprise adoption and governance of integrated AI systems.