Abstract:As generative AI (GenAI) agents become more common in enterprise settings, they introduce security challenges that differ significantly from those posed by traditional systems. These agents are not just LLMs; they reason, remember, and act, often with minimal human oversight. This paper introduces a comprehensive threat model tailored specifically for GenAI agents, focusing on how their autonomy, persistent memory access, complex reasoning, and tool integration create novel risks. This research work identifies 9 primary threats and organizes them across five key domains: cognitive architecture vulnerabilities, temporal persistence threats, operational execution vulnerabilities, trust boundary violations, and governance circumvention. These threats are not just theoretical they bring practical challenges such as delayed exploitability, cross-system propagation, cross system lateral movement, and subtle goal misalignments that are hard to detect with existing frameworks and standard approaches. To help address this, the research work present two complementary frameworks: ATFAA - Advanced Threat Framework for Autonomous AI Agents, which organizes agent-specific risks, and SHIELD, a framework proposing practical mitigation strategies designed to reduce enterprise exposure. While this work builds on existing work in LLM and AI security, the focus is squarely on what makes agents different and why those differences matter. Ultimately, this research argues that GenAI agents require a new lens for security. If we fail to adapt our threat models and defenses to account for their unique architecture and behavior, we risk turning a powerful new tool into a serious enterprise liability.
Abstract:The rise of generative AI (GenAI) multi-agent systems (MAS) necessitates standardized protocols enabling agents to discover and interact with external tools. However, these protocols introduce new security challenges, particularly; tool squatting; the deceptive registration or representation of tools. This paper analyzes tool squatting threats within the context of emerging interoperability standards, such as Model Context Protocol (MCP) or seamless communication between agents protocols. It introduces a comprehensive Tool Registry system designed to mitigate these risks. We propose a security-focused architecture featuring admin-controlled registration, centralized tool discovery, fine grained access policies enforced via dedicated Agent and Tool Registry services, a dynamic trust scoring mechanism based on tool versioning and known vulnerabilities, and just in time credential provisioning. Based on its design principles, the proposed registry framework aims to effectively prevent common tool squatting vectors while preserving the flexibility and power of multi-agent systems. This work addresses a critical security gap in the rapidly evolving GenAI ecosystem and provides a foundation for secure tool integration in production environments.
Abstract:As Agentic AI systems evolve from basic workflows to complex multi agent collaboration, robust protocols such as Google's Agent2Agent (A2A) become essential enablers. To foster secure adoption and ensure the reliability of these complex interactions, understanding the secure implementation of A2A is essential. This paper addresses this goal by providing a comprehensive security analysis centered on the A2A protocol. We examine its fundamental elements and operational dynamics, situating it within the framework of agent communication development. Utilizing the MAESTRO framework, specifically designed for AI risks, we apply proactive threat modeling to assess potential security issues in A2A deployments, focusing on aspects such as Agent Card management, task execution integrity, and authentication methodologies. Based on these insights, we recommend practical secure development methodologies and architectural best practices designed to build resilient and effective A2A systems. Our analysis also explores how the synergy between A2A and the Model Context Protocol (MCP) can further enhance secure interoperability. This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol for building robust and secure next generation agentic applications.
Abstract:The Model Context Protocol (MCP), introduced by Anthropic, provides a standardized framework for artificial intelligence (AI) systems to interact with external data sources and tools in real-time. While MCP offers significant advantages for AI integration and capability extension, it introduces novel security challenges that demand rigorous analysis and mitigation. This paper builds upon foundational research into MCP architecture and preliminary security assessments to deliver enterprise-grade mitigation frameworks and detailed technical implementation strategies. Through systematic threat modeling and analysis of MCP implementations and analysis of potential attack vectors, including sophisticated threats like tool poisoning, we present actionable security patterns tailored for MCP implementers and adopters. The primary contribution of this research lies in translating theoretical security concerns into a practical, implementable framework with actionable controls, thereby providing essential guidance for the secure enterprise adoption and governance of integrated AI systems.