Abstract:Robust XAI techniques should ideally be simultaneously deterministic, model agnostic, and guaranteed to converge. We propose MULTIDIMENSIONAL PROBLEM AGNOSTIC EXPLAINABLE AI (MUPAX), a deterministic, model agnostic explainability technique, with guaranteed convergency. MUPAX measure theoretic formulation gives principled feature importance attribution through structured perturbation analysis that discovers inherent input patterns and eliminates spurious relationships. We evaluate MUPAX on an extensive range of data modalities and tasks: audio classification (1D), image classification (2D), volumetric medical image analysis (3D), and anatomical landmark detection, demonstrating dimension agnostic effectiveness. The rigorous convergence guarantees extend to any loss function and arbitrary dimensions, making MUPAX applicable to virtually any problem context for AI. By contrast with other XAI methods that typically decrease performance when masking, MUPAX not only preserves but actually enhances model accuracy by capturing only the most important patterns of the original data. Extensive benchmarking against the state of the XAI art demonstrates MUPAX ability to generate precise, consistent and understandable explanations, a crucial step towards explainable and trustworthy AI systems. The source code will be released upon publication.
Abstract:Current progress in the artificial intelligence domain has led to the development of various types of AI-powered dementia assessments, which can be employed to identify patients at the early stage of dementia. It can revolutionize the dementia care settings. It is essential that the medical community be aware of various AI assessments and choose them considering their degrees of validity, efficiency, practicality, reliability, and accuracy concerning the early identification of patients with dementia (PwD). On the other hand, AI developers should be informed about various non-AI assessments as well as recently developed AI assessments. Thus, this paper, which can be readable by both clinicians and AI engineers, fills the gap in the literature in explaining the existing solutions for the recognition of dementia to clinicians, as well as the techniques used and the most widespread dementia datasets to AI engineers. It follows a review of papers on AI and non-AI assessments for dementia to provide valuable information about various dementia assessments for both the AI and medical communities. The discussion and conclusion highlight the most prominent research directions and the maturity of existing solutions.