TIMC, DMIS




Abstract:In a certain number of situations, human cognitive functioning is difficult to represent with classical artificial intelligence structures. Such a difficulty arises in the polyneuropathy diagnosis which is based on the spatial distribution, along the nerve fibres, of lesions, together with the synthesis of several partial diagnoses. Faced with this problem while building up an expert system (NEUROP), we developed a heterogeneous knowledge representation associating a finite automaton with first order logic. A number of knowledge representation problems raised by the electromyography test features are examined in this study and the expert system architecture allowing such a knowledge modeling are laid out.




Abstract:For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home.