Abstract:Jet point cloud images are high dimensional data structures that needs to be transformed to a separable feature space for machine learning algorithms to distinguish them with simple decision boundaries. In this article, the authors focus on jet category separability by particle and jet feature extraction, resulting in more efficient training of a simple deep neural network, resulting in a computational efficient interpretable model for jet classification. The methodology is tested with three to five categories of jets from the JetNet benchmark jet tagging dataset, resulting in comparable performance to particle flow network. This work demonstrates that high dimensional datasets represented in separable latent spaces lead to simpler architectures for jet classification.
Abstract:Spectral Unmixing is an important technique in remote sensing used to analyze hyperspectral images to identify endmembers and estimate abundance maps. Over the past few decades, performance of techniques for endmember extraction and fractional abundance map estimation have significantly improved. This article presents an ensemble model workflow called Autoencoder Graph Ensemble Model (AEGEM) designed to extract endmembers and fractional abundance maps. An elliptical kernel is applied to measure spectral distances, generating the adjacency matrix within the elliptical neighborhood. This information is used to construct an elliptical graph, with centroids as senders and remaining pixels within the geometry as receivers. The next step involves stacking abundance maps, senders, and receivers as inputs to a Graph Convolutional Network, which processes this input to refine abundance maps. Finally, an ensemble decision-making process determines the best abundance maps based on root mean square error metric. The proposed AEGEM is assessed with benchmark datasets such as Samson, Jasper, and Urban, outperforming results obtained by baseline algorithms. For the Samson dataset, AEGEM excels in three abundance maps: water, tree and soil yielding values of 0.081, 0.158, and 0.182, respectively. For the Jasper dataset, results are improved for the tree and water endmembers with values of 0.035 and 0.060 in that order, as well as for the mean average of the spectral angle distance metric 0.109. For the Urban dataset, AEGEM outperforms previous results for the abundance maps of roof and asphalt, achieving values of 0.135 and 0.240, respectively. Additionally, for the endmembers of grass and roof, AEGEM achieves values of 0.063 and 0.094.
Abstract:Brain responses related to working memory originate from distinct brain areas and oscillate at different frequencies. EEG signals with high temporal correlation can effectively capture these responses. Therefore, estimating the functional connectivity of EEG for working memory protocols in different frequency bands plays a significant role in analyzing the brain dynamics with increasing memory and cognitive loads, which remains largely unexplored. The present study introduces a Bayesian structure learning algorithm to learn the functional connectivity of EEG in sensor space. Next, the functional connectivity graphs are taken as input to the graph convolutional network to classify the working memory loads. The intrasubject (subject-specific) classification performed on 154 subjects for six different verbal working memory loads produced the highest classification accuracy of 96% and average classification accuracy of 89%, outperforming state-of-the-art classification models proposed in the literature. Furthermore, the proposed Bayesian structure learning algorithm is compared with state-of-the-art functional connectivity estimation methods through intersubject and intrasubject statistical analysis of variance. The results also show that the alpha and theta bands have better classification accuracy than the beta band.