Abstract:In the field of pedometrics, tabular machine learning is the predominant method for predicting soil properties from remote and proximal soil sensing data, forming a central component of digital soil mapping. At the field-scale, this predictive soil modeling (PSM) task is typically constrained by small training sample sizes and high feature-to-sample ratios in soil spectroscopy. Traditionally, these conditions have proven challenging for conventional deep learning methods. Classical machine learning algorithms, particularly tree-based models like Random Forest and linear models such as Partial Least Squares Regression, have long been the default choice for field-scale PSM. Recent advances in artificial neural networks (ANN) for tabular data challenge this view, yet their suitability for field-scale PSM has not been proven. We introduce a comprehensive benchmark that evaluates state-of-the-art ANN architectures, including the latest multilayer perceptron (MLP)-based models (TabM, RealMLP), attention-based transformer variants (FT-Transformer, ExcelFormer, T2G-Former, AMFormer), retrieval-augmented approaches (TabR, ModernNCA), and an in-context learning foundation model (TabPFN). Our evaluation encompasses 31 field- and farm-scale datasets containing 30 to 460 samples and three critical soil properties: soil organic matter or soil organic carbon, pH, and clay content. Our results reveal that modern ANNs consistently outperform classical methods on the majority of tasks, demonstrating that deep learning has matured sufficiently to overcome the long-standing dominance of classical machine learning for PSM. Notably, TabPFN delivers the strongest overall performance, showing robustness across varying conditions. We therefore recommend the adoption of modern ANNs for field-scale PSM and propose TabPFN as the new default choice in the toolkit of every pedometrician.
Abstract:This paper introduces a model-agnostic approach designed to enhance uncertainty estimation in the predictive modeling of soil properties, a crucial factor for advancing pedometrics and the practice of digital soil mapping. For addressing the typical challenge of data scarcity in soil studies, we present an improved technique for uncertainty estimation. This method is based on the transformation of regression tasks into classification problems, which not only allows for the production of reliable uncertainty estimates but also enables the application of established machine learning algorithms with competitive performance that have not yet been utilized in pedometrics. Empirical results from datasets collected from two German agricultural fields showcase the practical application of the proposed methodology. Our results and findings suggest that the proposed approach has the potential to provide better uncertainty estimation than the models commonly used in pedometrics.