Abstract:The releases of OpenAI's o1 and o3 mark a significant paradigm shift in Large Language Models towards advanced reasoning capabilities. Notably, o3 outperformed humans in novel problem-solving and skill acquisition on the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI). However, this benchmark is limited to symbolic patterns, whereas humans often perceive and reason about multimodal scenarios involving both vision and language data. Thus, there is an urgent need to investigate advanced reasoning capabilities in multimodal tasks. To this end, we track the evolution of the GPT-[n] and o-[n] series models on challenging multimodal puzzles, requiring fine-grained visual perception with abstract or algorithmic reasoning. The superior performance of o1 comes at nearly 750 times the computational cost of GPT-4o, raising concerns about its efficiency. Our results reveal a clear upward trend in reasoning capabilities across model iterations, with notable performance jumps across GPT-series models and subsequently to o1. Nonetheless, we observe that the o1 model still struggles with simple multimodal puzzles requiring abstract reasoning. Furthermore, its performance in algorithmic puzzles remains poor. We plan to continuously track new models in the series and update our results in this paper accordingly. All resources used in this evaluation are openly available https://github.com/declare-lab/LLM-PuzzleTest.
Abstract:Large language models (LLMs) have shown increasing proficiency in solving mathematical reasoning problems. However, many current open-source LLMs often still make calculation and semantic understanding errors in their intermediate reasoning steps. In this work, we propose PROVE, a simple yet effective framework that uses program-based verification as a heuristic to filter out potentially incorrect reasoning paths before aggregating the final answers. Instead of relying on vanilla majority voting, our approach rejects solutions whose corresponding program outputs are inconsistent with the generated solution, aggregating only those validated by Python programs. We conducted extensive experiments on 13 open-source LLMs from various model families and sizes, ranging from 0.5B to 13B parameters, across seven math benchmarks. We demonstrate that PROVE consistently outperforms vanilla majority voting as a heuristic for solving mathematical reasoning tasks across all datasets and model sizes. Notably, PROVE increases accuracy on the GSM8K benchmark from 48.85% to 53.83% for Qwen2-0.5B-Instruct, from 65.66% to 73.01% for Llama-3.2-1B-Instruct, from 73.39% to 79.61% for Gemma-2-2b-it, and from 41.32% to 59.51% for Llama-2-7B-chat. Our codes are available at https://github.com/declare-lab/prove.
Abstract:In today's era, where large language models (LLMs) are integrated into numerous real-world applications, ensuring their safety and robustness is crucial for responsible AI usage. Automated red-teaming methods play a key role in this process by generating adversarial attacks to identify and mitigate potential vulnerabilities in these models. However, existing methods often struggle with slow performance, limited categorical diversity, and high resource demands. While Rainbow Teaming, a recent approach, addresses the diversity challenge by framing adversarial prompt generation as a quality-diversity search, it remains slow and requires a large fine-tuned mutator for optimal performance. To overcome these limitations, we propose Ferret, a novel approach that builds upon Rainbow Teaming by generating multiple adversarial prompt mutations per iteration and using a scoring function to rank and select the most effective adversarial prompt. We explore various scoring functions, including reward models, Llama Guard, and LLM-as-a-judge, to rank adversarial mutations based on their potential harm to improve the efficiency of the search for harmful mutations. Our results demonstrate that Ferret, utilizing a reward model as a scoring function, improves the overall attack success rate (ASR) to 95%, which is 46% higher than Rainbow Teaming. Additionally, Ferret reduces the time needed to achieve a 90% ASR by 15.2% compared to the baseline and generates adversarial prompts that are transferable i.e. effective on other LLMs of larger size. Our codes are available at https://github.com/declare-lab/ferret.