Abstract:Deep neural networks often rely on spurious correlations in training data, leading to biased or unfair predictions in safety-critical domains such as medicine and autonomous driving. While conventional bias mitigation typically requires retraining from scratch or redesigning data pipelines, recent advances in machine unlearning provide a promising alternative for post-hoc model correction. In this work, we investigate \textit{Bias-Aware Machine Unlearning}, a paradigm that selectively removes biased samples or feature representations to mitigate diverse forms of bias in vision models. Building on privacy-preserving unlearning techniques, we evaluate various strategies including Gradient Ascent, LoRA, and Teacher-Student distillation. Through empirical analysis on three benchmark datasets, CUB-200-2011 (pose bias), CIFAR-10 (synthetic patch bias), and CelebA (gender bias in smile detection), we demonstrate that post-hoc unlearning can substantially reduce subgroup disparities, with improvements in demographic parity of up to \textbf{94.86\%} on CUB-200, \textbf{30.28\%} on CIFAR-10, and \textbf{97.37\%} on CelebA. These gains are achieved with minimal accuracy loss and with methods scoring an average of 0.62 across the 3 settings on the joint evaluation of utility, fairness, quality, and privacy. Our findings establish machine unlearning as a practical framework for enhancing fairness in deployed vision systems without necessitating full retraining.