Abstract:Individuals with ambulatory disabilities often encounter significant barriers when navigating urban environments due to the lack of accessible information and tools. This paper presents OmniAcc, an AI-powered interactive navigation system that utilizes GPT-4, satellite imagery, and OpenStreetMap data to identify, classify, and map wheelchair-accessible features such as ramps and crosswalks in the built environment. OmniAcc offers personalized route planning, real-time hands-free navigation, and instant query responses regarding physical accessibility. By using zero-shot learning and customized prompts, the system ensures precise detection of accessibility features, while supporting validation through structured workflows. This paper introduces OmniAcc and explores its potential to assist urban planners and mobility-aid users, demonstrated through a case study on crosswalk detection. With a crosswalk detection accuracy of 97.5%, OmniAcc highlights the transformative potential of AI in improving navigation and fostering more inclusive urban spaces.
Abstract:Delivery of items from the producer to the consumer has experienced significant growth over the past decade and has been greatly fueled by the recent pandemic. Amazon Fresh, Shopify, UberEats, InstaCart, and DoorDash are rapidly growing and are sharing the same business model of consumer items or food delivery. Existing food delivery methods are sub-optimal because each delivery is individually optimized to go directly from the producer to the consumer via the shortest time path. We observe a significant scope for reducing the costs associated with completing deliveries under the current model. We model our food delivery problem as a multi-objective optimization, where consumer satisfaction and delivery costs, both, need to be optimized. Taking inspiration from the success of ride-sharing in the taxi industry, we propose DeliverAI - a reinforcement learning-based path-sharing algorithm. Unlike previous attempts for path-sharing, DeliverAI can provide real-time, time-efficient decision-making using a Reinforcement learning-enabled agent system. Our novel agent interaction scheme leverages path-sharing among deliveries to reduce the total distance traveled while keeping the delivery completion time under check. We generate and test our methodology vigorously on a simulation setup using real data from the city of Chicago. Our results show that DeliverAI can reduce the delivery fleet size by 12\%, the distance traveled by 13%, and achieve 50% higher fleet utilization compared to the baselines.