Abstract:Recent advances in LLM-based ASR connect frozen speech encoders with Large Language Models (LLMs) via lightweight projectors. While effective in monolingual settings, a single projector struggles to capture the diverse acoustic-to-semantic mappings required for multilingual ASR. To address this, we propose SMEAR-MoE, a stabilized Mixture-of-Experts projector that ensures dense gradient flow to all experts, preventing expert collapse while enabling cross-lingual sharing. We systematically compare monolithic, static multi-projector, and dynamic MoE designs across four Indic languages (Hindi, Marathi, Tamil, Telugu). Our SMEAR-MoE achieves strong performance, delivering upto a 7.6% relative WER reduction over the single-projector baseline, while maintaining comparable runtime efficiency. Analysis of expert routing further shows linguistically meaningful specialization, with related languages sharing experts. These results demonstrate that stable multi-expert projectors are key to scalable and robust multilingual ASR.
Abstract:Speech-to-speech translation (S2ST) aims to convert spoken input in one language to spoken output in another, typically focusing on either language translation or accent adaptation. However, effective cross-cultural communication requires handling both aspects simultaneously - translating content while adapting the speaker's accent to match the target language context. In this work, we propose a unified approach for simultaneous speech translation and change of accent, a task that remains underexplored in current literature. Our method reformulates the problem as a conditional generation task, where target speech is generated based on phonemes and guided by target speech features. Leveraging the power of diffusion models, known for high-fidelity generative capabilities, we adapt text-to-image diffusion strategies by conditioning on source speech transcriptions and generating Mel spectrograms representing the target speech with desired linguistic and accentual attributes. This integrated framework enables joint optimization of translation and accent adaptation, offering a more parameter-efficient and effective model compared to traditional pipelines.