Abstract:Wide-spread adoption of unmanned vehicle technologies requires the ability to predict the motion of the combined vehicle operation from observations. While the general prediction of such motion for an arbitrary control mechanism is difficult, for a particular choice of control, the dynamics reduces to the Lie-Poisson equations [33,34]. Our goal is to learn the phase-space dynamics and predict the motion solely from observations, without any knowledge of the control Hamiltonian or the nature of interaction between vehicles. To achieve that goal, we propose the Control Optimal Lie-Poisson Neural Networks (CO-LPNets) for learning and predicting the dynamics of the system from data. Our methods learn the mapping of the phase space through the composition of Poisson maps, which are obtained as flows from Hamiltonians that could be integrated explicitly. CO-LPNets preserve the Poisson bracket and thus preserve Casimirs to machine precision. We discuss the completeness of the derived neural networks and their efficiency in approximating the dynamics. To illustrate the power of the method, we apply these techniques to systems of $N=3$ particles evolving on ${\rm SO}(3)$ group, which describe coupled rigid bodies rotating about their center of mass, and ${\rm SE}(3)$ group, applicable to the movement of unmanned air and water vehicles. Numerical results demonstrate that CO-LPNets learn the dynamics in phase space from data points and reproduce trajectories, with good accuracy, over hundreds of time steps. The method uses a limited number of points ($\sim200$/dimension) and parameters ($\sim 1000$ in our case), demonstrating potential for practical applications and edge deployment.
Abstract:To accurately compute data-based prediction of Hamiltonian systems, especially the long-term evolution of such systems, it is essential to utilize methods that preserve the structure of the equations over time. We consider a case that is particularly challenging for data-based methods: systems with interacting parts that do not reduce to pure momentum evolution. Such systems are essential in scientific computations. For example, any discretization of a continuum elastic rod can be viewed as interacting elements that can move and rotate in space, with each discrete element moving on the group of rotations and translations $SE(3)$. We develop a novel method of data-based computation and complete phase space learning of such systems. We follow the original framework of \emph{SympNets} (Jin et al, 2020) building the neural network from canonical phase space mappings, and transformations that preserve the Lie-Poisson structure (\emph{LPNets}) as in (Eldred et al, 2024). We derive a novel system of mappings that are built into neural networks for coupled systems. We call such networks Coupled Lie-Poisson Neural Networks, or \emph{CLPNets}. We consider increasingly complex examples for the applications of CLPNets: rotation of two rigid bodies about a common axis, the free rotation of two rigid bodies, and finally the evolution of two connected and interacting $SE(3)$ components. Our method preserves all Casimir invariants of each system to machine precision, irrespective of the quality of the training data, and preserves energy to high accuracy. Our method also shows good resistance to the curse of dimensionality, requiring only a few thousand data points for all cases studied, with the effective dimension varying from three to eighteen. Additionally, the method is highly economical in memory requirements, requiring only about 200 parameters for the most complex case considered.
Abstract:An accurate data-based prediction of the long-term evolution of Hamiltonian systems requires a network that preserves the appropriate structure under each time step. Every Hamiltonian system contains two essential ingredients: the Poisson bracket and the Hamiltonian. Hamiltonian systems with symmetries, whose paradigm examples are the Lie-Poisson systems, have been shown to describe a broad category of physical phenomena, from satellite motion to underwater vehicles, fluids, geophysical applications, complex fluids, and plasma physics. The Poisson bracket in these systems comes from the symmetries, while the Hamiltonian comes from the underlying physics. We view the symmetry of the system as primary, hence the Lie-Poisson bracket is known exactly, whereas the Hamiltonian is regarded as coming from physics and is considered not known, or known approximately. Using this approach, we develop a network based on transformations that exactly preserve the Poisson bracket and the special functions of the Lie-Poisson systems (Casimirs) to machine precision. We present two flavors of such systems: one, where the parameters of transformations are computed from data using a dense neural network (LPNets), and another, where the composition of transformations is used as building blocks (G-LPNets). We also show how to adapt these methods to a larger class of Poisson brackets. We apply the resulting methods to several examples, such as rigid body (satellite) motion, underwater vehicles, a particle in a magnetic field, and others. The methods developed in this paper are important for the construction of accurate data-based methods for simulating the long-term dynamics of physical systems.