



Abstract:Future AI agents might run autonomously with elevated privileges. If these agents are misaligned, they might abuse these privileges to cause serious damage. The field of AI control develops techniques that make it harder for misaligned AIs to cause such damage, while preserving their usefulness. We introduce BashArena, a setting for studying AI control techniques in security-critical environments. BashArena contains 637 Linux system administration and infrastructure engineering tasks in complex, realistic environments, along with four sabotage objectives (execute malware, exfiltrate secrets, escalate privileges, and disable firewall) for a red team to target. We evaluate multiple frontier LLMs on their ability to complete tasks, perform sabotage undetected, and detect sabotage attempts. Claude Sonnet 4.5 successfully executes sabotage while evading monitoring by GPT-4.1 mini 26% of the time, at 4% trajectory-wise FPR. Our findings provide a baseline for designing more effective control protocols in BashArena. We release the dataset as a ControlArena setting and share our task generation pipeline.
Abstract:Control evaluations measure whether monitoring and security protocols for AI systems prevent intentionally subversive AI models from causing harm. Our work presents the first control evaluation performed in an agent environment. We construct BashBench, a dataset of 257 challenging multi-step system administration tasks, and evaluate whether various safety measures can prevent an adversarially constructed AI agent from covertly downloading and executing malicious code in this environment. This multi-step setting introduces new attack and defense dynamics, which we investigate in order to design novel control protocols that prevent safety failures without hindering the ability of non-malicious agents to perform useful work. We introduce a class of control protocols called resample protocols that dynamically take additional samples of certain actions. We find these protocols significantly improve on existing techniques by selectively blocking the AI agent from executing suspicious code and incriminating the agent by generating additional examples of dangerous behavior. We measure the tradeoff between attack prevention and usefulness; our best protocol combines resampling with analysis of previous steps, reducing the success rate of attacks from 58% to 7% at a 5% cost to the performance of a non-malicious agent.