Abstract:Structural biology has long been dominated by the one sequence, one structure, one function paradigm, yet many critical biological processes - from enzyme catalysis to membrane transport - depend on proteins that adopt multiple conformational states. Existing multi-state design approaches rely on post-hoc aggregation of single-state predictions, achieving poor experimental success rates compared to single-state design. We introduce DynamicMPNN, an inverse folding model explicitly trained to generate sequences compatible with multiple conformations through joint learning across conformational ensembles. Trained on 46,033 conformational pairs covering 75% of CATH superfamilies and evaluated using AlphaFold initial guess, DynamicMPNN outperforms ProteinMPNN by up to 13% on structure-normalized RMSD across our challenging multi-state protein benchmark.
Abstract:Peptides are ubiquitous and important biologically derived molecules, that have been found to self-assemble to form a wide array of structures. Extensive research has explored the impacts of both internal chemical composition and external environmental stimuli on the self-assembly behaviour of these systems. However, there is yet to be a systematic study that gathers this rich literature data and collectively examines these experimental factors to provide a global picture of the fundamental rules that govern protein self-assembly behavior. In this work, we curate a peptide assembly database through a combination of manual processing by human experts and literature mining facilitated by a large language model. As a result, we collect more than 1,000 experimental data entries with information about peptide sequence, experimental conditions and corresponding self-assembly phases. Utilizing the collected data, ML models are trained and evaluated, demonstrating excellent accuracy (>80\%) and efficiency in peptide assembly phase classification. Moreover, we fine-tune our GPT model for peptide literature mining with the developed dataset, which exhibits markedly superior performance in extracting information from academic publications relative to the pre-trained model. We find that this workflow can substantially improve efficiency when exploring potential self-assembling peptide candidates, through guiding experimental work, while also deepening our understanding of the mechanisms governing peptide self-assembly. In doing so, novel structures can be accessed for a range of applications including sensing, catalysis and biomaterials.