Abstract:The Design2Code problem, which involves converting digital designs into functional source code, is a significant challenge in software development due to its complexity and time-consuming nature. Traditional approaches often struggle with accurately interpreting the intricate visual details and structural relationships inherent in webpage designs, leading to limitations in automation and efficiency. In this paper, we propose a novel method that leverages multimodal graph representation learning to address these challenges. By integrating both visual and structural information from design sketches, our approach enhances the accuracy and efficiency of code generation, particularly in producing semantically correct and structurally sound HTML code. We present a comprehensive evaluation of our method, demonstrating significant improvements in both accuracy and efficiency compared to existing techniques. Extensive evaluation demonstrates significant improvements of multimodal graph learning over existing techniques, highlighting the potential of our method to revolutionize design-to-code automation. Code available at https://github.com/HySonLab/Design2Code