Abstract:Livestock methane emissions represent 32% of human-caused methane production, making automated monitoring critical for climate mitigation strategies. We introduce GasTwinFormer, a hybrid vision transformer for real-time methane emission segmentation and dietary classification in optical gas imaging through a novel Mix Twin encoder alternating between spatially-reduced global attention and locally-grouped attention mechanisms. Our architecture incorporates a lightweight LR-ASPP decoder for multi-scale feature aggregation and enables simultaneous methane segmentation and dietary classification in a unified framework. We contribute the first comprehensive beef cattle methane emission dataset using OGI, containing 11,694 annotated frames across three dietary treatments. GasTwinFormer achieves 74.47% mIoU and 83.63% mF1 for segmentation while maintaining exceptional efficiency with only 3.348M parameters, 3.428G FLOPs, and 114.9 FPS inference speed. Additionally, our method achieves perfect dietary classification accuracy (100%), demonstrating the effectiveness of leveraging diet-emission correlations. Extensive ablation studies validate each architectural component, establishing GasTwinFormer as a practical solution for real-time livestock emission monitoring. Please see our project page at gastwinformer.github.io.
Abstract:Weed management represents a critical challenge in agriculture, significantly impacting crop yields and requiring substantial resources for control. Effective weed monitoring and analysis strategies are crucial for implementing sustainable agricultural practices and site-specific management approaches. We introduce WeedSense, a novel multi-task learning architecture for comprehensive weed analysis that jointly performs semantic segmentation, height estimation, and growth stage classification. We present a unique dataset capturing 16 weed species over an 11-week growth cycle with pixel-level annotations, height measurements, and temporal labels. WeedSense leverages a dual-path encoder incorporating Universal Inverted Bottleneck blocks and a Multi-Task Bifurcated Decoder with transformer-based feature fusion to generate multi-scale features and enable simultaneous prediction across multiple tasks. WeedSense outperforms other state-of-the-art models on our comprehensive evaluation. On our multi-task dataset, WeedSense achieves mIoU of 89.78% for segmentation, 1.67cm MAE for height estimation, and 99.99% accuracy for growth stage classification while maintaining real-time inference at 160 FPS. Our multitask approach achieves 3$\times$ faster inference than sequential single-task execution and uses 32.4% fewer parameters. Please see our project page at weedsense.github.io.
Abstract:Methane emissions from livestock, particularly cattle, significantly contribute to climate change. Effective methane emission mitigation strategies are crucial as the global population and demand for livestock products increase. We introduce Gasformer, a novel semantic segmentation architecture for detecting low-flow rate methane emissions from livestock, and controlled release experiments using optical gas imaging. We present two unique datasets captured with a FLIR GF77 OGI camera. Gasformer leverages a Mix Vision Transformer encoder and a Light-Ham decoder to generate multi-scale features and refine segmentation maps. Gasformer outperforms other state-of-the-art models on both datasets, demonstrating its effectiveness in detecting and segmenting methane plumes in controlled and real-world scenarios. On the livestock dataset, Gasformer achieves mIoU of 88.56%, surpassing other state-of-the-art models. Materials are available at: github.com/toqitahamid/Gasformer.
Abstract:Analyzing and detecting cannabis seed variants is crucial for the agriculture industry. It enables precision breeding, allowing cultivators to selectively enhance desirable traits. Accurate identification of seed variants also ensures regulatory compliance, facilitating the cultivation of specific cannabis strains with defined characteristics, ultimately improving agricultural productivity and meeting diverse market demands. This paper presents a study on cannabis seed variant detection by employing a state-of-the-art object detection model Faster R-CNN. This study implemented the model on a locally sourced cannabis seed dataset in Thailand, comprising 17 distinct classes. We evaluate six Faster R-CNN models by comparing performance on various metrics and achieving a mAP score of 94.08\% and an F1 score of 95.66\%. This paper presents the first known application of deep neural network object detection models to the novel task of visually identifying cannabis seed types.
Abstract:With the advent of deep learning for computer vision tasks, the need for accurately labeled data in large volumes is vital for any application. The increasingly available large amounts of solar image data generated by the Solar Dynamic Observatory (SDO) mission make this domain particularly interesting for the development and testing of deep learning systems. The currently available labeled solar data is generated by the SDO mission's Feature Finding Team's (FFT) specialized detection modules. The major drawback of these modules is that detection and labeling is performed with a cadence of every 4 to 12 hours, depending on the module. Since SDO image data products are created every 10 seconds, there is a considerable gap between labeled observations and the continuous data stream. In order to address this shortcoming, we trained a deep regression network to track the movement of two solar phenomena: Active Region and Coronal Hole events. To the best of our knowledge, this is the first attempt of solar event tracking using a deep learning approach. Since it is impossible to fully evaluate the performance of the suggested event tracks with the original data (only partial ground truth is available), we demonstrate with several metrics the effectiveness of our approach. With the purpose of generating continuously labeled solar image data, we present this feasibility analysis showing the great promise of deep regression networks for this task.