Abstract:The affective attitude of liking a recommended item reflects just one category in a wide spectrum of affective phenomena that also includes emotions such as entranced or intrigued, moods such as cheerful or buoyant, as well as more fine-grained affective states, such as "pleasantly surprised by the conclusion". In this paper, we introduce a novel recommendation task that can leverage a virtually unbounded range of affective states sought explicitly by the user in order to identify items that, upon consumption, are likely to induce those affective states. Correspondingly, we create a large dataset of user preferences containing expressions of fine-grained affective states that are mined from book reviews, and propose a Transformer-based architecture that leverages such affective expressions as input. We then use the resulting dataset of affective states preferences, together with the linked users and their histories of book readings, ratings, and reviews, to train and evaluate multiple recommendation models on the task of matching recommended items with affective preferences. Experiments show that the best results are obtained by models that can utilize textual descriptions of items and user affective preferences.
Abstract:A recommender system that optimizes its recommendations solely to fit a user's history of ratings for consumed items can create a filter bubble, wherein the user does not get to experience items from novel, unseen categories. One approach to mitigate this undesired behavior is to recommend items with high potential for serendipity, namely surprising items that are likely to be highly rated. In this paper, we propose a content-based formulation of serendipity that is rooted in Bayesian surprise and use it to measure the serendipity of items after they are consumed and rated by the user. When coupled with a collaborative-filtering component that identifies similar users, this enables recommending items with high potential for serendipity. To facilitate the evaluation of topic-level models for surprise and serendipity, we introduce a dataset of book reading histories extracted from Goodreads, containing over 26 thousand users and close to 1.3 million books, where we manually annotate 449 books read by 4 users in terms of their time-dependent, topic-level surprise. Experimental evaluations show that models that use Bayesian surprise correlate much better with the manual annotations of topic-level surprise than distance-based heuristics, and also obtain better serendipitous item recommendation performance.