Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Tomoyuki Obuchi

On Model Selection Consistency of Lasso for High-Dimensional Ising Models on Tree-like Graphs


Oct 16, 2021
Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima

* 30 pages, 4 figures 

  Access Paper or Ask Questions

Ising Model Selection Using $\ell_{1}$-Regularized Linear Regression


Feb 08, 2021
Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima

* 28 pages, 8 figures 

  Access Paper or Ask Questions

Perfect Reconstruction of Sparse Signals via Greedy Monte-Carlo Search


Aug 24, 2020
Kao Hayashi, Tomoyuki Obuchi, Yoshiyuki Kabashima

* 13 pages, 2 figures 

  Access Paper or Ask Questions

Structure Learning in Inverse Ising Problems Using $\ell_2$-Regularized Linear Estimator


Aug 19, 2020
Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima

* 39 pages, 8 figures 

  Access Paper or Ask Questions

Learning performance in inverse Ising problems with sparse teacher couplings


Dec 25, 2019
Alia Abbara, Yoshiyuki Kabashima, Tomoyuki Obuchi, Yingying Xu

* 27 pages, 7 figures 

  Access Paper or Ask Questions

Empirical Bayes Method for Boltzmann Machines


Jun 14, 2019
Muneki Yasuda, Tomoyuki Obuchi


  Access Paper or Ask Questions

Cross validation in sparse linear regression with piecewise continuous nonconvex penalties and its acceleration


Feb 27, 2019
Tomoyuki Obuchi, Ayaka Sakata

* 30 pages, 17 figures 

  Access Paper or Ask Questions

Perfect reconstruction of sparse signals with piecewise continuous nonconvex penalties and nonconvexity control


Feb 20, 2019
Ayaka Sakata, Tomoyuki Obuchi

* 22 pages, 14 figures 

  Access Paper or Ask Questions

Mean-field theory of graph neural networks in graph partitioning


Oct 29, 2018
Tatsuro Kawamoto, Masashi Tsubaki, Tomoyuki Obuchi

* 16 pages, 6 figures, Thirty-second Conference on Neural Information Processing Systems (NIPS2018) 

  Access Paper or Ask Questions

Accelerating Cross-Validation in Multinomial Logistic Regression with $\ell_1$-Regularization


Sep 18, 2018
Tomoyuki Obuchi, Yoshiyuki Kabashima

* 30 pages, 9 figures. MATLAB and python codes implementing the formula derived in the manuscript are distributed in https://github.com/T-Obuchi/AcceleratedCVonMLR_matlab and https://github.com/T-Obuchi/AcceleratedCVonMLR_python 

  Access Paper or Ask Questions

Statistical mechanical analysis of sparse linear regression as a variable selection problem


Sep 10, 2018
Tomoyuki Obuchi, Yoshinori Nakanishi-Ohno, Masato Okada, Yoshiyuki Kabashima

* 39 pages, 14 figures 

  Access Paper or Ask Questions

Semi-Analytic Resampling in Lasso


Feb 28, 2018
Tomoyuki Obuchi, Yoshiyuki Kabashima

* 22 pages, 6 figures 

  Access Paper or Ask Questions

Approximate cross-validation formula for Bayesian linear regression


Oct 25, 2016
Yoshiyuki Kabashima, Tomoyuki Obuchi, Makoto Uemura

* 5 pages, 2 figures, invited paper for Allerton2016 conference 

  Access Paper or Ask Questions

Boltzmann-Machine Learning of Prior Distributions of Binarized Natural Images


Oct 24, 2016
Tomoyuki Obuchi, Hirokazu Koma, Muneki Yasuda

* J. Phys. Soc. Jpn. 85 (2016) 114803 
* 32 pages, 33 figures 

  Access Paper or Ask Questions