Abstract:Training data reconstruction attacks enable adversaries to recover portions of a released model's training data. We consider the attacks where a reconstructor neural network learns to invert the (random) mapping between training data and model weights. Prior work has shown that an informed adversary with access to released model's weights and all but one training data point can achieve high-quality reconstructions in this way. However, differential privacy can defend against such an attack with little to no loss in model's utility when the amount of training data is sufficiently large. In this work we consider a more realistic adversary who only knows the distribution from which a small training dataset has been sampled and who attacks a transfer-learned neural network classifier that has been trained on this dataset. We exhibit an attack that works in this realistic threat model and demonstrate that in the small-data regime it cannot be defended against by DP-SGD without severely damaging the classifier accuracy. This raises significant concerns about the use of such transfer-learned classifiers when protection of training-data is paramount. We demonstrate the effectiveness and robustness of our attack on VGG, EfficientNet and ResNet image classifiers transfer-learned on MNIST, CIFAR-10 and CelebA respectively. Additionally, we point out that the commonly used (true-positive) reconstruction success rate metric fails to reliably quantify the actual reconstruction effectiveness. Instead, we make use of the Neyman-Pearson lemma to construct the receiver operating characteristic curve and consider the associated true-positive reconstruction rate at a fixed level of the false-positive reconstruction rate.