BBVA Research
Abstract:We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators -- including Geopolitical Risk, Economic Policy Uncertainty, Trade Policy Uncertainty, and Political Sentiment -- for 42 countries across both emerging and developed markets. Using this dataset, we study how sentiment dynamics shape sovereign risk, measured by Credit Default Swap (CDS) spreads, and evaluate their forecasting value relative to traditional drivers such as global monetary policy and market volatility. Our horse-race analysis of forecasting models demonstrates that incorporating news-based indicators significantly enhances predictive accuracy and enriches the analysis, with non-linear machine learning methods -- particularly Random Forests -- delivering the largest gains. Our analysis reveals that while global financial variables remain the dominant drivers of sovereign risk, geopolitical risk and economic policy uncertainty also play a meaningful role. Crucially, their effects are amplified through non-linear interactions with global financial conditions. Finally, we document pronounced regional heterogeneity, as certain asset classes and emerging markets exhibit heightened sensitivity to shocks in policy rates, global financial volatility, and geopolitical risk.




Abstract:We use the aggregate information from individual-to-firm and firm-to-firm in Garanti BBVA Bank transactions to mimic domestic private demand. Particularly, we replicate the quarterly national accounts aggregate consumption and investment (gross fixed capital formation) and its bigger components (Machinery and Equipment and Construction) in real time for the case of Turkey. In order to validate the usefulness of the information derived from these indicators we test the nowcasting ability of both indicators to nowcast the Turkish GDP using different nowcasting models. The results are successful and confirm the usefulness of Consumption and Investment Banking transactions for nowcasting purposes. The value of the Big data information is more relevant at the beginning of the nowcasting process, when the traditional hard data information is scarce. This makes this information specially relevant for those countries where statistical release lags are longer like the Emerging Markets.