Abstract:We study the expressivity of sparse maxout networks, where each neuron takes a fixed number of inputs from the previous layer and employs a, possibly multi-argument, maxout activation. This setting captures key characteristics of convolutional or graph neural networks. We establish a duality between functions computable by such networks and a class of virtual polytopes, linking their geometry to questions of network expressivity. In particular, we derive a tight bound on the dimension of the associated polytopes, which serves as the central tool for our analysis. Building on this, we construct a sequence of depth hierarchies. While sufficiently deep sparse maxout networks are universal, we prove that if the required depth is not reached, width alone cannot compensate for the sparsity of a fixed indegree constraint.