Abstract:Several recent works argue that LLMs have a universal truth direction where true and false statements are linearly separable in the activation space of the model. It has been demonstrated that linear probes trained on a single hidden state of the model already generalize across a range of topics and might even be used for lie detection in LLM conversations. In this work we explore how this truth direction generalizes between various conversational formats. We find good generalization between short conversations that end on a lie, but poor generalization to longer formats where the lie appears earlier in the input prompt. We propose a solution that significantly improves this type of generalization by adding a fixed key phrase at the end of each conversation. Our results highlight the challenges towards reliable LLM lie detectors that generalize to new settings.
Abstract:A rapidly developing application of LLMs in XAI is to convert quantitative explanations such as SHAP into user-friendly narratives to explain the decisions made by smaller prediction models. Evaluating the narratives without relying on human preference studies or surveys is becoming increasingly important in this field. In this work we propose a framework and explore several automated metrics to evaluate LLM-generated narratives for explanations of tabular classification tasks. We apply our approach to compare several state-of-the-art LLMs across different datasets and prompt types. As a demonstration of their utility, these metrics allow us to identify new challenges related to LLM hallucinations for XAI narratives.