This paper concerns imitation learning (IL) (i.e, the problem of learning to mimic expert behaviors from demonstrations) in cooperative multi-agent systems. The learning problem under consideration poses several challenges, characterized by high-dimensional state and action spaces and intricate inter-agent dependencies. In a single-agent setting, IL has proven to be done efficiently through an inverse soft-Q learning process given expert demonstrations. However, extending this framework to a multi-agent context introduces the need to simultaneously learn both local value functions to capture local observations and individual actions, and a joint value function for exploiting centralized learning. In this work, we introduce a novel multi-agent IL algorithm designed to address these challenges. Our approach enables the centralized learning by leveraging mixing networks to aggregate decentralized Q functions. A main advantage of this approach is that the weights of the mixing networks can be trained using information derived from global states. We further establish conditions for the mixing networks under which the multi-agent objective function exhibits convexity within the Q function space. We present extensive experiments conducted on some challenging competitive and cooperative multi-agent game environments, including an advanced version of the Star-Craft multi-agent challenge (i.e., SMACv2), which demonstrates the effectiveness of our proposed algorithm compared to existing state-of-the-art multi-agent IL algorithms.
Training agents in multi-agent competitive games presents significant challenges due to their intricate nature. These challenges are exacerbated by dynamics influenced not only by the environment but also by opponents' strategies. Existing methods often struggle with slow convergence and instability. To address this, we harness the potential of imitation learning to comprehend and anticipate opponents' behavior, aiming to mitigate uncertainties with respect to the game dynamics. Our key contributions include: (i) a new multi-agent imitation learning model for predicting next moves of the opponents -- our model works with hidden opponents' actions and local observations; (ii) a new multi-agent reinforcement learning algorithm that combines our imitation learning model and policy training into one single training process; and (iii) extensive experiments in three challenging game environments, including an advanced version of the Star-Craft multi-agent challenge (i.e., SMACv2). Experimental results show that our approach achieves superior performance compared to existing state-of-the-art multi-agent RL algorithms.
Constrained Reinforcement Learning has been employed to enforce safety constraints on policy through the use of expected cost constraints. The key challenge is in handling expected cost accumulated using the policy and not just in a single step. Existing methods have developed innovative ways of converting this cost constraint over entire policy to constraints over local decisions (at each time step). While such approaches have provided good solutions with regards to objective, they can either be overly aggressive or conservative with respect to costs. This is owing to use of estimates for "future" or "backward" costs in local cost constraints. To that end, we provide an equivalent unconstrained formulation to constrained RL that has an augmented state space and reward penalties. This intuitive formulation is general and has interesting theoretical properties. More importantly, this provides a new paradigm for solving constrained RL problems effectively. As we show in our experimental results, we are able to outperform leading approaches on multiple benchmark problems from literature.
Recent research on vulnerabilities of deep reinforcement learning (RL) has shown that adversarial policies adopted by an adversary agent can influence a target RL agent (victim agent) to perform poorly in a multi-agent environment. In existing studies, adversarial policies are directly trained based on experiences of interacting with the victim agent. There is a key shortcoming of this approach; knowledge derived from historical interactions may not be properly generalized to unexplored policy regions of the victim agent, making the trained adversarial policy significantly less effective. In this work, we design a new effective adversarial policy learning algorithm that overcomes this shortcoming. The core idea of our new algorithm is to create a new imitator to imitate the victim agent's policy while the adversarial policy will be trained not only based on interactions with the victim agent but also based on feedback from the imitator to forecast victim's intention. By doing so, we can leverage the capability of imitation learning in well capturing underlying characteristics of the victim policy only based on sample trajectories of the victim. Our victim imitation learning model differs from prior models as the environment's dynamics are driven by adversary's policy and will keep changing during the adversarial policy training. We provide a provable bound to guarantee a desired imitating policy when the adversary's policy becomes stable. We further strengthen our adversarial policy learning by making our imitator a stronger version of the victim. Finally, our extensive experiments using four competitive MuJoCo game environments show that our proposed adversarial policy learning algorithm outperforms state-of-the-art algorithms.
We study inverse reinforcement learning (IRL) and imitation learning (IM), the problems of recovering a reward or policy function from expert's demonstrated trajectories. We propose a new way to improve the learning process by adding a weight function to the maximum entropy framework, with the motivation of having the ability to learn and recover the stochasticity (or the bounded rationality) of the expert policy. Our framework and algorithms allow to learn both a reward (or policy) function and the structure of the entropy terms added to the Markov Decision Processes, thus enhancing the learning procedure. Our numerical experiments using human and simulated demonstrations and with discrete and continuous IRL/IM tasks show that our approach outperforms prior algorithms.
Distributionally robust optimization (DRO) has shown lot of promise in providing robustness in learning as well as sample based optimization problems. We endeavor to provide DRO solutions for a class of sum of fractionals, non-convex optimization which is used for decision making in prominent areas such as facility location and security games. In contrast to previous work, we find it more tractable to optimize the equivalent variance regularized form of DRO rather than the minimax form. We transform the variance regularized form to a mixed-integer second order cone program (MISOCP), which, while guaranteeing near global optimality, does not scale enough to solve problems with real world data-sets. We further propose two abstraction approaches based on clustering and stratified sampling to increase scalability, which we then use for real world data-sets. Importantly, we provide near global optimality guarantees for our approach and show experimentally that our solution quality is better than the locally optimal ones achieved by state-of-the-art gradient-based methods. We experimentally compare our different approaches and baselines, and reveal nuanced properties of a DRO solution.
Stochastic and soft optimal policies resulting from entropy-regularized Markov decision processes (ER-MDP) are desirable for exploration and imitation learning applications. Motivated by the fact that such policies are sensitive with respect to the state transition probabilities, and the estimation of these probabilities may be inaccurate, we study a robust version of the ER-MDP model, where the stochastic optimal policies are required to be robust with respect to the ambiguity in the underlying transition probabilities. Our work is at the crossroads of two important schemes in reinforcement learning (RL), namely, robust MDP and entropy regularized MDP. We show that essential properties that hold for the non-robust ER-MDP and robust unregularized MDP models also hold in our settings, making the robust ER-MDP problem tractable. We show how our framework and results can be integrated into different algorithmic schemes including value or (modified) policy iteration, which would lead to new robust RL and inverse RL algorithms to handle uncertainties. Analyses on computational complexity and error propagation under conventional uncertainty settings are also provided.
We study the relation between different Markov Decision Process (MDP) frameworks in the machine learning and econometrics literatures, including the standard MDP, the entropy and general regularized MDP, and stochastic MDP, where the latter is based on the assumption that the reward function is stochastic and follows a given distribution. We show that the entropy-regularized MDP is equivalent to a stochastic MDP model, and is strictly subsumed by the general regularized MDP. Moreover, we propose a distributional stochastic MDP framework by assuming that the distribution of the reward function is ambiguous. We further show that the distributional stochastic MDP is equivalent to the regularized MDP, in the sense that they always yield the same optimal policies. We also provide a connection between stochastic/regularized MDP and constrained MDP. Our work gives a unified view on several important MDP frameworks, which would lead new ways to interpret the (entropy/general) regularized MDP frameworks through the lens of stochastic rewards and vice-versa. Given the recent popularity of regularized MDP in (deep) reinforcement learning, our work brings new understandings of how such algorithmic schemes work and suggest ideas to develop new ones.
We consider the problem of recovering an expert's reward function with inverse reinforcement learning (IRL) when there are missing/incomplete state-action pairs or observations in the demonstrated trajectories. This issue of missing trajectory data or information occurs in many situations, e.g., GPS signals from vehicles moving on a road network are intermittent. In this paper, we propose a tractable approach to directly compute the log-likelihood of demonstrated trajectories with incomplete/missing data. Our algorithm is efficient in handling a large number of missing segments in the demonstrated trajectories, as it performs the training with incomplete data by solving a sequence of systems of linear equations, and the number of such systems to be solved does not depend on the number of missing segments. Empirical evaluation on a real-world dataset shows that our training algorithm outperforms other conventional techniques.
We consider the problem of learning from demonstrated trajectories with inverse reinforcement learning (IRL). Motivated by a limitation of the classical maximum entropy model in capturing the structure of the network of states, we propose an IRL model based on a generalized version of the causal entropy maximization problem, which allows us to generate a class of maximum entropy IRL models. Our generalized model has an advantage of being able to recover, in addition to a reward function, another expert's function that would (partially) capture the impact of the connecting structure of the states on experts' decisions. Empirical evaluation on a real-world dataset and a grid-world dataset shows that our generalized model outperforms the classical ones, in terms of recovering reward functions and demonstrated trajectories.