Abstract:Until now, in the wake of the COVID-19 pandemic in 2019, lung diseases, especially diseases such as lung cancer and chronic obstructive pulmonary disease (COPD), have become an urgent global health issue. In order to mitigate the goal problem, early detection and accurate diagnosis of these conditions are critical for effective treatment and improved patient outcomes. To further research and reduce the error rate of hospital diagnoses, this comprehensive study explored the potential of computer-aided design (CAD) systems, especially utilizing advanced deep learning models such as U-Net. And compared with the literature content of other authors, this study explores the capabilities of U-Net in detail, and enhances the ability to simulate CAD systems through the VGG16 algorithm. An extensive dataset consisting of lung CT images and corresponding segmentation masks, curated collaboratively by multiple academic institutions, serves as the basis for empirical validation. In this paper, the efficiency of U-Net model is evaluated rigorously and precisely under multiple hardware configurations, such as single CPU, single GPU, distributed GPU and federated learning, and the effectiveness and development of the method in the segmentation task of lung disease are demonstrated. Empirical results clearly affirm the robust performance of the U-Net model, most effectively utilizing four GPUs for distributed learning, and these results highlight the potential of U-Net-based CAD systems for accurate and timely lung disease detection and diagnosis huge potential.
Abstract:This paper proposes a financial fraud detection system based on improved Random Forest (RF) and Gradient Boosting Machine (GBM). Specifically, the system introduces a novel model architecture called GBM-SSRF (Gradient Boosting Machine with Simplified and Strengthened Random Forest), which cleverly combines the powerful optimization capabilities of the gradient boosting machine (GBM) with improved randomization. The computational efficiency and feature extraction capabilities of the Simplified and Strengthened Random Forest (SSRF) forest significantly improve the performance of financial fraud detection. Although the traditional random forest model has good classification capabilities, it has high computational complexity when faced with large-scale data and has certain limitations in feature selection. As a commonly used ensemble learning method, the GBM model has significant advantages in optimizing performance and handling nonlinear problems. However, GBM takes a long time to train and is prone to overfitting problems when data samples are unbalanced. In response to these limitations, this paper optimizes the random forest based on the structure, reducing the computational complexity and improving the feature selection ability through the structural simplification and enhancement of the random forest. In addition, the optimized random forest is embedded into the GBM framework, and the model can maintain efficiency and stability with the help of GBM's gradient optimization capability. Experiments show that the GBM-SSRF model not only has good performance, but also has good robustness and generalization capabilities, providing an efficient and reliable solution for financial fraud detection.