Abstract:We propose a data-efficient, physics-aware generative framework in function space for inverse PDE problems. Existing plug-and-play diffusion posterior samplers represent physics implicitly through joint coefficient-solution modeling, requiring substantial paired supervision. In contrast, our Decoupled Diffusion Inverse Solver (DDIS) employs a decoupled design: an unconditional diffusion learns the coefficient prior, while a neural operator explicitly models the forward PDE for guidance. This decoupling enables superior data efficiency and effective physics-informed learning, while naturally supporting Decoupled Annealing Posterior Sampling (DAPS) to avoid over-smoothing in Diffusion Posterior Sampling (DPS). Theoretically, we prove that DDIS avoids the guidance attenuation failure of joint models when training data is scarce. Empirically, DDIS achieves state-of-the-art performance under sparse observation, improving $l_2$ error by 11% and spectral error by 54% on average; when data is limited to 1%, DDIS maintains accuracy with 40% advantage in $l_2$ error compared to joint models.
Abstract:We revisit the Bayesian Black-Litterman (BL) portfolio model and remove its reliance on subjective investor views. Classical BL requires an investor "view": a forecast vector $q$ and its uncertainty matrix $\Omega$ that describe how much a chosen portfolio should outperform the market. Our key idea is to treat $(q,\Omega)$ as latent variables and learn them from market data within a single Bayesian network. Consequently, the resulting posterior estimation admits closed-form expression, enabling fast inference and stable portfolio weights. Building on these, we propose two mechanisms to capture how features interact with returns: shared-latent parametrization and feature-influenced views; both recover classical BL and Markowitz portfolios as special cases. Empirically, on 30-year Dow-Jones and 20-year sector-ETF data, we improve Sharpe ratios by 50% and cut turnover by 55% relative to Markowitz and the index baselines. This work turns BL into a fully data-driven, view-free, and coherent Bayesian framework for portfolio optimization.