Abstract:Hyperkinetic movement disorders (HMDs) such as dystonia, tremor, chorea, myoclonus, and tics are disabling motor manifestations across childhood and adulthood. Their fluctuating, intermittent, and frequently co-occurring expressions hinder clinical recognition and longitudinal monitoring, which remain largely subjective and vulnerable to inter-rater variability. Objective and scalable methods to distinguish overlapping HMD phenotypes from routine clinical videos are still lacking. Here, we developed a pose-based machine-learning framework that converts standard outpatient videos into anatomically meaningful keypoint time series and computes kinematic descriptors spanning statistical, temporal, spectral, and higher-order irregularity-complexity features.