Abstract:Robot-Assisted Minimally Invasive Surgery is currently fully manually controlled by a trained surgeon. Automating this has great potential for alleviating issues, e.g., physical strain, highly repetitive tasks, and shortages of trained surgeons. For these reasons, recent works have utilized Artificial Intelligence methods, which show promising adaptability. Despite these advances, there is skepticism of these methods because they lack explainability and robust safety guarantees. This paper presents a framework for a safe, uncertainty-aware learning method. We train an Ensemble Model of Diffusion Policies using expert demonstrations of needle insertion. Using an Ensemble model, we can quantify the policy's epistemic uncertainty, which is used to determine Out-Of-Distribution scenarios. This allows the system to release control back to the surgeon in the event of an unsafe scenario. Additionally, we implement a model-free Control Barrier Function to place formal safety guarantees on the predicted action. We experimentally evaluate our proposed framework using a state-of-the-art robotic suturing simulator. We evaluate multiple scenarios, such as dropping the needle, moving the camera, and moving the phantom. The learned policy is robust to these perturbations, showing corrective behaviors and generalization, and it is possible to detect Out-Of-Distribution scenarios. We further demonstrate that the Control Barrier Function successfully limits the action to remain within our specified safety set in the case of unsafe predictions.
Abstract:Deep Vein Thrombosis (DVT) is a common yet potentially fatal condition, often leading to critical complications like pulmonary embolism. DVT is commonly diagnosed using Ultrasound (US) imaging, which can be inconsistent due to its high dependence on the operator's skill. Robotic US Systems (RUSs) aim to improve diagnostic test consistency but face challenges with the complex scanning pattern needed for DVT assessment, where precise control over US probe pressure is crucial for indirectly detecting occlusions. This work introduces an imitation learning method, based on Kernelized Movement Primitives (KMP), to standardize DVT US exams by training an autonomous robotic controller using sonographer demonstrations. A new recording device design enhances demonstration ergonomics, integrating with US probes and enabling seamless force and position data recording. KMPs are used to capture scanning skills, linking scan trajectory and force, enabling generalization beyond the demonstrations. Our approach, evaluated on synthetic models and volunteers, shows that the KMP-based RUS can replicate an expert's force control and image quality in DVT US examination. It outperforms previous methods using manually defined force profiles, improving exam standardization and reducing reliance on specialized sonographers.
Abstract:Deep needle insertion to a target often poses a huge challenge, requiring a combination of specialized skills, assistive technology, and extensive training. One of the frequently encountered medical scenarios demanding such expertise includes the needle insertion into a femoral vessel in the groin. After the access to the femoral vessel, various medical procedures, such as cardiac catheterization and extracorporeal membrane oxygenation (ECMO) can be performed. However, even with the aid of Ultrasound imaging, achieving successful insertion can necessitate multiple attempts due to the complexities of anatomy and tissue deformation. To address this challenge, this paper presents an innovative technology for needle tip real-time tracking, aiming for enhanced needle insertion guidance. Specifically, our approach revolves around the creation of scattering imaging using an optical fiber-equipped needle, and uses Convolutional Neural Network (CNN) based algorithms to enable real-time estimation of the needle tip's position and orientation during insertion procedures. The efficacy of the proposed technology was rigorously evaluated through three experiments. The first two experiments involved rubber and bacon phantoms to simulate groin anatomy. The positional errors averaging 2.3+1.5mm and 2.0+1.2mm, and the orientation errors averaging 0.2+0.11rad and 0.16+0.1rad. Furthermore, the system's capabilities were validated through experiments conducted on fresh porcine phantom mimicking more complex anatomical structures, yielding positional accuracy results of 3.2+3.1mm and orientational accuracy of 0.19+0.1rad. Given the average femoral arterial radius of 4 to 5mm, the proposed system is demonstrated with a great potential for precise needle guidance in femoral artery insertion procedures. In addition, the findings highlight the broader potential applications of the system in the medical field.