Abstract:A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.
Abstract:We evaluate the effectiveness of importance weighting in deep neural networks under label shift and covariate shift. On synthetic 2D data (linearly separable and moon-shaped) using logistic regression and MLPs, we observe that weighting strongly affects decision boundaries early in training but fades with prolonged optimization. On CIFAR-10 with various class imbalances, only L2 regularization (not dropout) helps preserve weighting effects. In a covariate-shift experiment, importance weighting yields no significant performance gain, highlighting challenges on complex data. Our results call into question the practical utility of importance weighting for real-world distribution shifts.