Abstract:Proactive agents must decide not only what to say but also whether and when to intervene. Many current systems rely on brittle heuristics or indiscriminate long reasoning, which offers little control over the benefit-burden tradeoff. We formulate the problem as cost-sensitive selective intervention and present PRISM, a novel framework that couples a decision-theoretic gate with a dual-process reasoning architecture. At inference time, the agent intervenes only when a calibrated probability of user acceptance exceeds a threshold derived from asymmetric costs of missed help and false alarms. Inspired by festina lente (Latin: "make haste slowly"), we gate by an acceptance-calibrated, cost-derived threshold and invoke a resource-intensive Slow mode with counterfactual checks only near the decision boundary, concentrating computation on ambiguous and high-stakes cases. Training uses gate-aligned, schema-locked distillation: a teacher running the full PRISM pipeline provides dense, executable supervision on unlabeled interaction traces, while the student learns a response policy that is explicitly decoupled from the intervention gate to enable tunable and auditable control. On ProactiveBench, PRISM reduces false alarms by 22.78% and improves F1 by 20.14% over strong baselines. These results show that principled decision-theoretic gating, paired with selective slow reasoning and aligned distillation, yields proactive agents that are precise, computationally efficient, and controllable. To facilitate reproducibility, we release our code, models, and resources at https://prism-festinalente.github.io/; all experiments use the open-source ProactiveBench benchmark.
Abstract:The personalization of black-box large language models (LLMs) is a critical yet challenging task. Existing approaches predominantly rely on context injection, where user history is embedded into the prompt to directly guide the generation process. However, this single-step paradigm imposes a dual burden on the model: generating accurate content while simultaneously aligning with user-specific styles. This often results in a trade-off that compromises output quality and limits precise control. To address this fundamental tension, we propose Reflective Personalization Optimization (RPO), a novel framework that redefines the personalization paradigm by decoupling content generation from alignment. RPO operates in two distinct stages: first, a base model generates a high-quality, generic response; then, an external reflection module explicitly rewrites this output to align with the user's preferences. This reflection module is trained using a two-stage process. Initially, supervised fine-tuning is employed on structured rewriting trajectories to establish a core personalized reasoning policy that models the transformation from generic to user-aligned responses. Subsequently, reinforcement learning is applied to further refine and enhance the quality of the personalized outputs. Comprehensive experiments on the LaMP benchmark demonstrate that RPO, by decoupling content generation from personalization, significantly outperforms state-of-the-art baselines. These findings underscore the superiority of explicit response shaping over implicit context injection. Moreover, RPO introduces an efficient, model-agnostic personalization layer that can be seamlessly integrated with any underlying base model, paving the way for a new and effective direction in user-centric generation scenarios.