JAMSTEC, INPEX, JAPEX, and JOGMEC
Abstract:Federated learning (FL) enables multiple clients to collaboratively train models without sharing their data. Measuring participant contributions in FL is crucial for incentivizing clients and ensuring transparency. While various methods have been proposed for contribution measurement, they are designed exclusively for centralized federated learning (CFL), where a central server collects and aggregates client models, along with evaluating their contributions. Meanwhile, decentralized federated learning (DFL), in which clients exchange models directly without a central server, has gained significant attention for mitigating communication bottlenecks and eliminating a single point of failure. However, applying existing contribution measurement methods to DFL is challenging due to the presence of multiple global models and the absence of a central server. In this study, we present novel methodologies for measuring participant contributions in DFL. We first propose DFL-Shapley, an extension of the Shapley value tailored for DFL, adapting this widely used CFL metric to decentralized settings. Given the impracticality of computing the ideal DFL-Shapley in real-world systems, we introduce DFL-MR, a computable approximation that estimates overall contributions by accumulating round-wise Shapley values. We evaluate DFL-Shapley and DFL-MR across various FL scenarios and compare them with existing CFL metrics. The experimental results confirm DFL-Shapley as a valid ground-truth metric and demonstrate DFL-MR's proximity to DFL-Shapley across various settings, highlighting their effectiveness as contribution metrics in DFL.
Abstract:This paper proposes a federated learning framework designed to achieve \textit{relative fairness} for clients. Traditional federated learning frameworks typically ensure absolute fairness by guaranteeing minimum performance across all client subgroups. However, this approach overlooks disparities in model performance between subgroups. The proposed framework uses a minimax problem approach to minimize relative unfairness, extending previous methods in distributionally robust optimization (DRO). A novel fairness index, based on the ratio between large and small losses among clients, is introduced, allowing the framework to assess and improve the relative fairness of trained models. Theoretical guarantees demonstrate that the framework consistently reduces unfairness. We also develop an algorithm, named \textsc{Scaff-PD-IA}, which balances communication and computational efficiency while maintaining minimax-optimal convergence rates. Empirical evaluations on real-world datasets confirm its effectiveness in maintaining model performance while reducing disparity.
Abstract:A real-time stuck pipe prediction methodology is proposed in this paper. We assume early signs of stuck pipe to be apparent when the drilling data behavior deviates from that from normal drilling operations. The definition of normalcy changes with drill string configuration or geological conditions. Here, a depth-domain data representation is adopted to capture the localized normal behavior. Several models, based on auto-encoder and variational auto-encoders, are trained on regular drilling data extracted from actual drilling data. When the trained model is applied to data sets before stuck incidents, eight incidents showed large reconstruction errors. These results suggest better performance than the previously reported supervised approach. Inter-comparison of various models reveals the robustness of our approach. The model performance depends on the featured parameter suggesting the need for multiple models in actual operation.