Abstract:Inferring spatial transcriptomics (ST) from histology enables scalable histogenomic profiling, yet current methods are largely restricted to single-tissue models. This fragmentation fails to leverage biological principles shared across cancer types and hinders application to data-scarce scenarios. While pan-cancer training offers a solution, the resulting heterogeneity challenges monolithic architectures. To bridge this gap, we introduce MoLF (Mixture-of-Latent-Flow), a generative model for pan-cancer histogenomic prediction. MoLF leverages a conditional Flow Matching objective to map noise to the gene latent manifold, parameterized by a Mixture-of-Experts (MoE) velocity field. By dynamically routing inputs to specialized sub-networks, this architecture effectively decouples the optimization of diverse tissue patterns. Our experiments demonstrate that MoLF establishes a new state-of-the-art, consistently outperforming both specialized and foundation model baselines on pan-cancer benchmarks. Furthermore, MoLF exhibits zero-shot generalization to cross-species data, suggesting it captures fundamental, conserved histo-molecular mechanisms.
Abstract:Predicting spatial gene expression from H&E histology offers a scalable and clinically accessible alternative to sequencing, but realizing clinical impact requires models that generalize across cancer types and capture biologically coherent signals. Prior work is often limited to per-cancer settings and variance-based evaluation, leaving functional relevance underexplored. We introduce HistoPrism, an efficient transformer-based architecture for pan-cancer prediction of gene expression from histology. To evaluate biological meaning, we introduce a pathway-level benchmark, shifting assessment from isolated gene-level variance to coherent functional pathways. HistoPrism not only surpasses prior state-of-the-art models on highly variable genes , but also more importantly, achieves substantial gains on pathway-level prediction, demonstrating its ability to recover biologically coherent transcriptomic patterns. With strong pan-cancer generalization and improved efficiency, HistoPrism establishes a new standard for clinically relevant transcriptomic modeling from routinely available histology.