Abstract:Due to its robust search mechanism, Gravitational search algorithm (GSA) has achieved lots of popularity from different research communities. However, stagnation reduces its searchability towards global optima for rigid and complex multi-modal problems. This paper proposes a GSA variant that incorporates chaos-embedded opposition-based learning into the basic GSA for the stagnation-free search. Additionally, a sine-cosine based chaotic gravitational constant is introduced to balance the trade-off between exploration and exploitation capabilities more effectively. The proposed variant is tested over 23 classical benchmark problems, 15 test problems of CEC 2015 test suite, and 15 test problems of CEC 2014 test suite. Different graphical, as well as empirical analyses, reveal the superiority of the proposed algorithm over conventional meta-heuristics and most recent GSA variants.
Abstract:In the binary search space, GSA framework encounters the shortcomings of stagnation, diversity loss, premature convergence and high time complexity. To address these issues, a novel binary variant of GSA called `A novel neighbourhood archives embedded gravitational constant in GSA for binary search space (BNAGGSA)' is proposed in this paper. In BNAGGSA, the novel fitness-distance based social interaction strategy produces a self-adaptive step size mechanism through which the agent moves towards the optimal direction with the optimal step size, as per its current search requirement. The performance of the proposed algorithm is compared with the two binary variants of GSA over 23 well-known benchmark test problems. The experimental results and statistical analyses prove the supremacy of BNAGGSA over the compared algorithms. Furthermore, to check the applicability of the proposed algorithm in solving real-world applications, a windfarm layout optimization problem is considered. Two case studies with two different wind data sets of two different wind sites is considered for experiments.